
Insertion, Evasion, and

Denial of Service:

Eluding Network Intrusion Detection

Thomas H. Ptacek

tqbf@securenetworks.com

Timothy N. Newsham

newsham@securenetworks.com

Secure Networks, Inc.

January, 1998

\Not everything that is counted counts, and not everything that counts can be

counted."

Albert Einstein

\. . . yes, a game where people throw ducks at balloons, and nothing is what it

seems. . . "

Homer J. Simpson

Abstract

All currently available network intrusion detection (ID) systems rely

upon a mechanism of data collection|passive protocol analysis|which

is fundamentally awed. In passive protocol analysis, the intrusion detec-

tion system (IDS) unobtrusively watches all tra�c on the network, and

scrutinizes it for patterns of suspicious activity. We outline in this pa-

per two basic problems with the reliability of passive protocol analysis:

(1) there isn't enough information on the wire on which to base conclu-

sions about what is actually happening on networked machines, and (2)

the fact that the system is passive makes it inherently \fail-open," mean-

ing that a compromise in the availability of the IDS doesn't compromise

the availability of the network. We de�ne three classes of attacks which

exploit these fundamental problems|insertion, evasion, and denial of ser-

vice attacks|and describe how to apply these three types of attacks to

IP and TCP protocol analysis. We present the results of tests of the ef-

�cacy of our attacks against four of the most popular network intrusion

detection systems on the market. All of the ID systems tested were found

to be vulnerable to each of our attacks. This indicates that network ID

systems cannot be fully trusted until they are fundamentally redesigned.

2

1 Introduction

Intrusion detection is a security technology that attempts to identify and iso-

late \intrusions" against computer systems. Di�erent ID systems have di�ering

classi�cations of \intrusion"; a system attempting to detect attacks against web

servers might consider only malicious HTTP requests, while a system intended

to monitor dynamic routing protocols might only consider RIP spoo�ng. Re-

gardless, all ID systems share a general de�nition of \intrusion" as an unautho-

rized usage of or misuse of a computer system.

Intrusion detection is an important component of a security system, and it

complements other security technologies. By providing information to site ad-

ministration, ID allows not only for the detection of attacks explicitly addressed

by other security components (such as �rewalls and service wrappers), but also

attempts to provide noti�cation of new attacks unforeseen by other components.

Intrusion detection systems also provide forensic information that potentially

allow organizations to discover the origins of an attack. In this manner, ID

systems attempt to make attackers more accountable for their actions, and, to

some extent, act as a deterrent to future attacks.

1.1 The CIDF Model of Intrusion Detection Systems

There are many di�erent ID systems deployed world-wide, and almost as many

di�erent designs for them. Because there are so many di�erent ID systems,

it helps to have a model within which to consider all of them. The Common

Intrusion Detection Framework (CIDF)[1] de�nes a set of components that to-

gether de�ne an intrusion detection system. These components include event

generators (\E-boxes"), analysis engines (\A-boxes"), storage mechanisms (\D-

boxes"), and even countermeasures (\C-boxes"). A CIDF component can be a

software package in and of itself, or part of a larger system. Figure 1 shows the

manner in which each of these components relate.

The purpose of an E-box is to provide information about events to the rest

of the system. An \event" can be complex, or it can be a low-level network

protocol occurrence. It need not be evidence of an intrusion in and of itself.

E-boxes are the sensory organs of a complete IDS| without E-box inputs, an

intrusion detection system has no information from which to make conclusions

about security events.

A-boxes analyze input from event generators. A large portion of intrusion

detection research goes into creating new ways to analyze event streams to

extract relevant information, and a number of di�erent approaches have been

studied. Event analysis techniques based on statistical anomaly detection[2],

graph analysis[3], and even biological immune system models[4] have been pro-

posed.

E-boxes and A-boxes can produce large quantities of data. This information

must be made available to the system's operators if it is to be of any use. The

D-box component of an IDS de�nes the means used to store security information

and make it available at a later time.

3

Output: Reactions to Events

Event (E) Box

Storage (D) Box

Countermeasure
(C) Box

Analysis (A) Box

Raw Event Source

Output: Raw or Low-Level Events

Output:
Storage of Events
(locally or otherwise)

Output:
High Level,
Interpreted
Events

Figure 1: CIDF component relationships

Many ID systems are designed only as alarms. However, most commercially

available ID systems are equipped with some form of countermeasure (C-box)

capability, ranging from shutting down TCP connections to modifying router

�lter lists. This allows an IDS to try to prevent further attacks from occurring

after initial attacks are detected. Even systems that don't provide C-box capa-

bilities can be hooked into home-brewed response programs to achieve a similar

e�ect.

1.2 Network Intrusion Detection and Passive Analysis

Many ID systems are driven o� of audit logs provided by the operating system,

detecting attacks by watching for suspicious patterns of activity on a single

computer system. This type of IDS is good at discerning attacks that are initi-

ated by local users, and which involve misuse of the capabilities of one system.

However, these \host based" (and multi-host) intrusion detection systems have

a major shortcoming: they are insulated from network events that occur on a

low level (because they only interpret high-level logging information).

Network intrusion detection systems are driven o� of interpretation of raw

network tra�c. They attempt to detect attacks by watching for patterns of

suspicious activity in this tra�c. Network ID systems are good at discerning

attacks that involve low-level manipulation of the network, and can easily cor-

relate attacks against multiple machines on a network.

It's important to understand that while network ID has advantages over

host-based ID, it also has some distinct disadvantages. Network ID systems

are bad at determining exactly what's occurring on a computer system; host-

based ID systems are kept informed by the operating system as to exactly

what's happening. It is probably impossible to accurately reconstruct what is

happening on a system by watching \shell", \login", and \telnet" sessions.

Network ID systems work by examining the contents of actual packets trans-

4

Internet

��

��
��
��
��

��

�� ��

exchanged

router
router

Traffic watched by monitor

end-system

Traffic

with

monitor

attacker

Ethernet

Figure 2: An example network topology using a passive monitor

mitted on the network. These systems parse packets, analyzing the protocols

used on the network, and extract relevant information from them. This is typ-

ically accomplished by watching the network passively and capturing copies of

packets that are transmitted by other machines.

Passive network monitors take advantage of \promiscuous mode" access.

A promiscuous network device, or \sni�er", obtains copies of packets directly

from the network media, regardless of their destination (normal devices only

read packets addressed to them). Figure 2 shows a simpli�ed network topology

in which a passive network monitor has been deployed.

Passive protocol analysis is useful because it is unobtrusive and, at the lowest

levels of network operation, extremely di�cult to evade. The installation of a

sni�er does not cause any disruption to the network or degradation to network

performance. Individual machines on the network can be (and usually are)

ignorant to the presence of sni�er. Because the network media provides a reliable

way for a sni�er to obtain copies of raw network tra�c, there's no obvious way

to transmit a packet on a monitored network without it being seen.

1.3 Signature Analysis

The question of what information is relevant to an IDS depends upon what it is

trying to detect. For a system that is monitoring DNS tra�c, the names of the

hosts being queried for (and the responses to these queries) might be relevant.

For a system attempting to detect attacks against FTP servers, the contents of

all TCP connections to the FTP port would be interesting.

Some attacks can be discerned simply by parsing IP packets; an attempt

to circumvent a packet �lter using IP fragments is clearly observable simply by

examining the fragment o�set �elds of individual IP fragments. Other attacks

occur over multiple packets, or must be interpreted outside the context of the

actual protocol (for instance, a DNS query might only be relevant if it involves

5

disk)

Storage (D) Box

Countermeasure
(C) Box

Ethernet

Passive
Protocol
Analyzer

Pattern-Matching
Signature
Analysis

(i.e., close connection)

(i.e., TCP stream reconstruction)

(i.e.,
detection of
"phf" string
in session)

(i.e., store contents
of connection on

Figure 3: CIDF model of a network IDS

a certain host).

Most ID systems identify such attacks using a technique called \signature

analysis" (also called \misuse detection"). Signature analysis simply refers to

the fact that the ID system is programmed to interpret a certain series of packets,

or a certain piece of data contained in those packets, as an attack. For example,

an IDS that watches web servers might be programmed to look for the string

\phf" as an indicator of a CGI program attack.

Most signature analysis systems are based o� of simple pattern matching al-

gorithms. In most cases, the IDS simply looks for a substring within a stream of

data carried by network packets. When it �nds this substring (for example, the

\phf" in \GET /cgi-bin/phf?"), it identi�es those network packets as vehicles

of an attack.

Signature analysis and passive protocol analysis together de�ne the event

generation and analysis techniques used by the majority of commercially avail-

able ID systems. Figure 3 shows how these components �t into the CIDF model.

For simplicity's sake, the remainder of this paper refers to systems that work

like this as \network ID systems."

1.4 The Need for Reliable Intrusion Detection

Because of its importance within a security system, it is critical that intrusion

detection systems function as expected by the organizations deploying them. In

order to be useful, site administration needs to be able to rely on the informa-

tion provided by the system; awed systems not only provide less information,

but also a dangerously false sense of security. Moreover, the forensic value of

information from faulty systems is not only negated, but potentially misleading.

Given the implications of the failure of an ID component, it is reasonable

to assume that ID systems are themselves logical targets for attack. A smart

intruder who realizes that an IDS has been deployed on a network she is at-

6

tacking will likely attack the IDS �rst, disabling it or forcing it to provide false

information (distracting security personnel from the actual attack in progress,

or framing someone else for the attack).

In order for a software component to resist attack, it must be designed and

implemented with an understanding of the speci�c means by which it can be

attacked. Unfortunately, very little information is publicly available to IDS de-

signers to document the traps and pitfalls of implementing such a system. Fur-

thermore, the majority of commercially available ID systems have proprietary,

secret designs, and are not available with source code. This makes independent

third-party analysis of such software for security problems di�cult.

The most obvious aspect of an IDS to attack is its \accuracy". The \accu-

racy" of an IDS is compromised when something occurs that causes the system

to incorrectly identify an intrusion when none has occurred (a \false positive"

output), or when something occurs that causes the IDS to incorrectly fail to

identify an intrusion when one has in fact occurred (a \false negative"). Some

researchers[5] discuss IDS failures in terms of de�ciencies in \accuracy" and

\completeness", where \accuracy" reects the number of false positives and

\completeness" reects the number of false negatives.

Other attacks might seek to disable the entire system, preventing it from

functioning e�ectively at all. We say that these attacks attempt to compromise

the \availability" of the system.

1.5 Points of Vulnerability in ID Systems

Each component identi�ed by the CIDF model has unique security implications,

and can be attacked for di�erent reasons.

As the only inputs of raw data into the system, E-boxes act as the eyes

and ears of an IDS. An attack against the event generation capabilities of an

IDS blinds it to what's actually happening in the system it's monitoring. For

example, an attack against the E-box of a network IDS could prevent it from

obtaining packets o� the network, or from appropriately decoding these packets.

Some intrusion detection systems rely on sophisticated analyses to provide

security information. In such systems, the reliability of the A-box components

used is important because an attacker that knows how to fool them can evade

detection | and complicated analytical techniques may provide many avenues

of attack. On the other hand, overly simplistic systems may fail to detect at-

tackers that intentionally mask their attacks with complex, coordinated system

interactions from multiple hosts[6].

The need for reliable data storage is obvious. An attacker that can subvert

the D-box components of an IDS can prevent it from recording the details of

her attack; poorly implemented data storage techniques can even allow sophisti-

cated attackers to alter recorded information after an attack has been detected,

eliminating its forensic value.

The C-box capability can also be attacked. If a network relies on these

countermeasures for protection, an attacker who knows how to thwart the C-box

can continue attacking the network, immune to the safety measures employed

7

by the system. More importantly, countermeasure capabilities can be fooled

into reacting against legitimate usage of the network | in this case, the IDS

can actually be turned against the network using it (often un-detectably).

It is apparent that there are many di�erent points at which an intrusion

detection system can be attacked. A comprehensive treatment of all potential

vulnerabilities is far outside the scope of this paper. Rather than attempting to

document general problems common to all ID systems, we focus on a speci�c

class of attacks against certain types of intrusion detection systems.

There exist several serious problems with the use of passive protocol analysis

as an event-generation source for signature-analysis intrusion detection systems.

This paper documents these problems, presents several attacks that exploit

them to allow an attacker to evade detection by ID systems, and veri�es their

applicability to the most popular commercial ID systems on the market.

8

2 Problems with Network ID Systems

Our work de�nes two general problems with network intrusion detection: �rst,

that there is insu�cient information available in packets read o� the wire to

correctly reconstruct what is occurring inside complex protocol transactions,

and next, that ID systems are inherently vulnerable to denial of service attacks.

The �rst of these problems reduces the accuracy of the system, and the second

jeopardizes its availability.

2.1 Insu�ciency of Information on the Wire

A network IDS captures packets o� the wire in order to determine what is

happening on the machines it's watching. A packet, by itself, is not as signi�cant

to the system as the manner in which the machine receiving that packet behaves

after processing it. Network ID systems work by predicting the behavior of

networked machines based on the packets they exchange.

The problem with this technique is that a passive network monitor cannot

accurately predict whether a given machine on the network is even going to see

a packet, let alone process it in the expected manner. A number of issues exist

which make the actual meaning of a packet captured by an IDS ambiguous.

A network IDS is typically on an entirely di�erent machine from the systems

it's watching. Often, the IDS is at a completely di�erent point on the network.

The basic problem facing a network IDS is that these di�erences cause incon-

sistencies between the ID system and the machines it watches. Some of these

discrepancies are the results of basic physical di�erences, others stem from dif-

ferent network driver implementations.

For example, consider an IDS and an end-system located at di�erent places

on a network. The two systems will receive any given packet at di�erent points

in time. This di�erence in time is important; during the lag, something can

happen on the end-system that might prevent it from accepting the packet.

The IDS, however, has already processed the packet|thinking that it will be

dealt with normally at the end-system.

Consider an IP packet with a bad UDP checksum. Most operating systems

will not accept such a packet. Some older systems might. The IDS needs to

know whether every system it watches will accept such a packet, or it can end

up with an inaccurate reconstruction of what happened on those machines.

Some operating systems might accept a packet that is obviously bad. A poor

implementation might, for example, allow an IP packet to have an incorrect

checksum. If the IDS doesn't know this, it will discard packets that the end-

system accepts, again reducing the accuracy of the system.

Even if the IDS knows what operating system every machine on the network

runs, it still might not be able to tell just by looking at a packet whether a

given machine will accept it. A machine that runs out of memory will discard

incoming packets. The IDS has no easy way to determine whether this is the

case on the end-system, and thus will assume that the end-system has accepted

9

the packet. CPU exhaustion and network saturation at the end-system can

cause the same problem.

Together, all these problems result in a situation where the IDS often simply

can't determine the implications of a packet merely by examining it; it needs

to know a great deal about the networking behavior of the end-systems that

it's watching, as well as the tra�c conditions of their network segments. Unfor-

tunately, a network IDS doesn't have any simple way of informing itself about

this; it obtains all its information from packet capture.

2.2 Vulnerability to Denial of Service

A \denial of service" (DOS) attack is one that is intended to compromise the

availability of a computing resource. Common DOS attacks include ping oods

and mail bombs | both intended to consume disproportionate amounts of re-

sources, starving legitimate processes. Other attacks are targeted at bugs in

software, and are intended to crash the system. The infamous \ping of death"

and \teardrop" attacks are examples of these.

Denial of service attacks can be leveraged to subvert systems (thus com-

promising more than availability) as well as to disable them. When discussing

the relevance of DOS attacks to a security system, the question of whether the

system is \fail-open" arises. A \fail-open" system ceases to provide protection

when it is disabled by a DOS attack. A \fail-closed" system, on the other hand,

leaves the network protected when it is forcibly disabled.

The terms \fail-open" and \fail-closed" are most often heard within the

context of �rewalls, which are access-control devices for networks. A fail-open

�rewall stops controlling access to the network when it crashes, but leaves the

network available. An attacker that can crash a fail-open �rewall can bypass

it entirely. Good �rewalls are designed to \fail-closed", leaving the network

completely inaccessible (and thus protected) if they crash.

Network ID systems are passive. They do not control the network or main-

tain its connectivity in any way. As such, a network IDS is inherently fail-open.

If an attacker can crash the IDS or starve it of resources, she can attack the rest

of the network as if the IDS wasn't even there. Because of the obvious suscep-

tibility to DOS attacks that network ID systems have, it's important that they

be forti�ed against them.

Unfortunately, denial of service attacks are extremely di�cult to defend

against. The resource starvation problem is not easily solvable, and there are

many di�erent points at which the resources of an IDS can be consumed. Attacks

that crash the IDS itself are easily �xed, but �nding all such vulnerabilities is

not easily done.

3 Attacks

We discuss in this paper three di�erent types of attacks against sni�er-based net-

work ID systems. Two of them attempt to subtly thwart protocol analysis, pre-

10

venting the signature-recognition system from obtaining adequate information

from which to draw conclusions. The third leverages simple resource-starvation

attacks to disrupt or disable the entire system.

All of our attacks involve an attacker that is speci�cally manipulating her

network usage to create abnormal, or even pathological, streams of tra�c.

In most cases, they require low-level packet forgery. However, unlike normal

\spoo�ng" attacks, these techniques are simpli�ed by the fact that the attacker

is manipulating her own sessions, not attempting to disrupt those of other users.

Two of our attacks are new 1 , and speci�c to tra�c analysis systems (though

not necessarily to intrusion detection). Both are mechanisms by which an at-

tacker can fool a protocol analyzer into thinking that something is (or is not)

happening on the network. The �rst of these, which we call \insertion", in-

volves an attacker stu�ng the system with subtly invalid packets; the second,

\evasion", involves exploiting inconsistencies between the analyzer and an end

system in order to slip packets past the analyzer.

3.1 Insertion

An IDS can accept a packet that an end-system rejects. An IDS that does this

makes the mistake of believing that the end-system has accepted and processed

the packet when it actually hasn't. An attacker can exploit this condition by

sending packets to an end-system that it will reject, but that the IDS will think

are valid. In doing this, the attacker is \inserting" data into the IDS | no other

system on the network cares about the bad packets.

We call this an \insertion" attack, and conditions that lend themselves to

insertion attacks are the most prevalent vulnerabilities in the intrusion detection

systems we tested. An attacker can use insertion attacks to defeat signature

analysis, allowing her to slip attacks past an IDS.

To understand why insertion attacks foil signature analysis, it's important

to understand how the technique is employed in real ID systems. For the most

part, \signature analysis" uses pattern-matching algorithms to detect a certain

string within a stream of data. For instance, an IDS that tries to detect a PHF

attack will look for the string \phf" within an HTTP \GET" request, which is

itself a longer string that might look something like \GET /cgi-bin/phf?".

The IDS can easily detect the string \phf" in that HTTP request using a sim-

ple substring search. However, the problem becomes much more di�cult to solve

when the attacker can send the same request to a webserver, but force the IDS to

see a di�erent string, such as \GET /cgi-bin/pleasedontdetecttthisforme?".

The attacker has used an insertion attack to add \leasedontdetectt", \is", and

\orme" to the original stream. The IDS can no longer pick out the string \phf"

from the stream of data it observes.

Figure 4 gives a simple example of the same attack. An attacker confronts the

IDS with a stream of 1-character packets (the attacker-originated data stream),

1Vern Paxson of LBNL presented a paper describing several of the same attacks as we do

at roughly the same time.[17]

11

Accepted by Monitor

A T T A C K A T X T A C K

T X T C A A KRejected
by End-System

End-System Network Monitor

Sees "ATXTACK"Sees "ATTACK"

Attacker’s Data Stream

Figure 4: Insertion of the letter 'X'

in which one of the characters (the letter `X') will be accepted only by the IDS.

As a result, the IDS and the end system reconstruct two di�erent strings.

In general, insertion attacks occur whenever an IDS is less strict in processing

a packet than an end-system. An obvious reaction to this problem might be to

make the IDS as strict as possible in processing packets read o� the wire; this

would minimize insertion attacks. However, another severe problem (\evasion"

attacks) occurs when this design approach is taken.

3.2 Evasion

An end-system can accept a packet that an IDS rejects. An IDS that mistakenly

rejects such a packet misses its contents entirely. This condition can also be

exploited, this time by slipping crucial information past the IDS in packets that

the IDS is too strict about processing. These packets are \evading" the scrutiny

of the IDS.

We call these \evasion" attacks, and they are the easiest to exploit and

most devastating to the accuracy of an IDS. Entire sessions can be carried

forth in packets that evade an IDS, and blatantly obvious attacks couched in

such sessions will happen right under the nose of even the most sophisticated

analysis engine.

Evasion attacks foil pattern matching in a manner quite similar to insertion

attacks. Again, the attacker causes the IDS to see a di�erent stream of data

than the end-system | this time, however, the end-system sees more than the

IDS, and the information that the IDS misses is critical to the detection of an

attack.

In the insertion attack we mentioned above, the attacker sends an HTTP

request, but muddies its contents on the IDS with additional data that make

the request seem innocuous. In an evasion attack, the attacker sends portions

of the same request in packets that the IDS mistakenly rejects, allowing her to

12

Sees "ATTCK"

A T T A C K A T KT C

T C A A KT

Attacker’s Data Stream

End-System Network Monitor

Sees "ATTACK"

Rejected
by Monitor

Accepted by End-System

Figure 5: Evasion of the letter 'A'

remove parts of the stream from the ID system's view. For example, the original

request could become \GET /gin/f", which would have no meaning to most ID

systems. Figure 5 shows the same type of attack.

3.3 Real World Insertion and Evasion

In reality, insertion and evasion attacks are not this easy to exploit. An attacker

usually does not have the luxury of injecting arbitrary characters into a stream.

However, these attacks can come into play well before pattern matching becomes

a consideration. One example of a place in which insertion attacks can be

leveraged at a very low level is stream reassembly. To understand how insertion

and evasion play into reassembly, we'll �rst explain what we mean by the term.

Many network protocols are simple and easy to analyze. They involve one

system sending a single request to another, and waiting for that system to

respond. For example, a network monitor can easily determine the purpose of

a single UDP DNS query by looking at one packet.

Other protocols are more complex, and require consideration of many indi-

vidual packets before a determination can be made about the actual transaction

they represent. In order for a network monitor to analyze them, it must state-

fully monitor an entire stream of packets, tracking information inside each of

them. For example, in order to discover what is happening inside of a TCP

connection, the monitor must attempt to reconstruct the streams of data being

exchanged over the connection.

Protocols like TCP allow any amount of data (within the limits of the IP

protocol's maximum packet size) to be contained in each discrete packet. A

collection of data can be transmitted in one packet, or in a group of them.

Because they can arrive at their destination out of order, even when transmitted

in order, each packet is given a number that indicates its place within the

intended order of the stream. This is commonly referred to as a \sequence

13

 Intended Order

C K A T A

CT KAA T

T
5 3 6 1 2 4

 Arrival Order

Figure 6: Sequenced reassembly

number", and we call collections of packets marked with sequence numbers

\sequenced".

The recipient of a stream of TCP packets has the responsibility of re-ordering

and extracting the information contained in each of them, reconstructing the

original collection of data that the sender transmitted. The process of taking

a collection of unordered, sequenced packets and reconstructing the stream of

data they contain is termed \reassembly". Figure 6 shows an example of how a

stream of data tagged with sequence numbers might be reassembled.

Reassembly issues manifest themselves at the IP layer, as well; IP de�nes

a mechanism, called \fragmentation", that allows machines to break individual

packets into smaller ones. Each individual fragment bears a marker that de-

notes where it belongs in the context of the original packet; this �eld is called

the \o�set". IP implementations must be able to accept a stream of packet

fragments and, using their o�sets, reassemble them into the original packet.

Insertion attacks disrupt stream reassembly by adding packets to the stream

that would cause it to be reassembled di�erently on the end-system|if the end

system accepted the disruptive packets. The inserted packets could change the

sequencing of the stream (consuming hundreds of sequence numbers), preventing

the IDS from dealing properly with the valid packets that follow it. Packets can

be inserted that overlap old data, rewriting the stream on the IDS. And, in

some situations, packets can be inserted that simply add content to the stream

which changes its meaning.

Evasion attacks disrupt stream reassembly by causing the IDS to miss parts

of it. The packets lost by the IDS might be vital for the sequencing of the

stream; the IDS might not know what to do with the packets it sees after the

evasion attacks. In many situations, it's fairly simple for the attacker to create

an entire stream that eludes the IDS.

3.4 Ambiguities

In many cases, defending against insertion and evasion attacks is easy. The

behavior that an attacker is exploiting to insert packets into the IDS is, in these

cases, simply wrong. The IDS might not be verifying a checksum or examining

a header �eld correctly; �xing the problem merely involves modifying the IDS

14

Section Info Needed Ambiguity

Section 4.1.1 Network Topology IP TTL �eld may not be large enough for the

number of hops to the destination

Section 4.1.1 Network Topology Packet may be too large for a downstream

link to handle without fragmentation

Section 4.1.2 Destination Con�guration Destination may be con�gured

to drop source-routed packets

Section 4.3.1 Destionation OS Destination may time partially received

fragments out di�erently depending on its OS

Section 4.3.3 Destination OS Destination may reassemble overlapping

fragments di�erently depending on its OS

Section 5.2.2 Destination OS Destination host may not accept TCP

packets bearing certain options

Section 5.2.2 Destination OS Destination may implement PAWS and silently

drop packets with old timestamps

Section 5.4.3 Destination OS Destination may resolve conicting TCP

segments di�erently depending on its OS

Section 5.5.1 Destination OS Destination may not check sequence numbers

on RST messages

Figure 7: Ambiguities identi�ed in this paper

to check these things.

In some cases, however, �xing the problem is not easy. There are situations

in which a network monitor cannot determine by looking at a packet whether

it will be accepted. This can be due to varying end-system behavior (one op-

erating system might process a packet di�erently from another). Basic network

ambiguities can also cause problems. In some cases, unless the IDS knows ex-

actly what path the packet is going to take to get to its destination, it won't

know whether it will actually arrive there.

Attacks that exploit these kinds of problems cannot easily be defended

against unless the IDS has a source of information that resolves the ambiguity.

If the IDS knows what operating system is running on the destination system, it

may be able to discern whether a packet is acceptable to that system. If the IDS

can reliably track the topology of the network, it may be be able to determine

whether or not a packet will ever be received by an end-system. In general, we

say a tra�c analysis problem is \ambiguous" if an important conclusion about

a packet cannot be made without a secondary source of information.

Figure 7 shows the ambiguities this paper identi�es. Each ambiguity can po-

tentially be resolved if the IDS has certain information (either a reliable view of

the topology of the network, the con�guration of the end-systems it's watching,

or the OS and version of those systems). This is, of course, not an exhaustive

list.

15

The next two sections of this paper provide examples of how insertion and

evasion attacks a�ect protocol analysis at the network (IP) and transport (TCP)

layers. These sections provide real-world examples of attacks on IP network ID

systems in great detail, working from the basic attacks we've de�ned here.

16

Line Description

229 No IP addresses set yet

232 Received packet is too short to be an IP datagram.

240 Received packet is too short to be an IP datagram.

247 IP version isn't `4'

253 IP \header length" �eld too small

257 IP \header length" is set larger than the entire packet

269 Bad header checksum

278 IP \total length" �eld is shorter than \header length"

348 Packet has IP options and ip dooptions() returns an error

437 Not addressed to this host

450 Too small to be a fragment

Figure 8: FreeBSD 2.2 ip input() packet discard points (netinet/ip input.c)

4 Network-Layer Problems

We begin our discussion of speci�c, observable problems in network intrusion

detection systems at the IP layer. An insertion or evasion problem occurring

within the IP processing of an IDS a�ects all higher levels of processing as

well; a problem that allows an attacker to insert an arbitrary IP packet allows

that attacker, by extension, to insert an arbitrary (well-formed) UDP or ICMP

packet. It is thus extremely important that an ID system be immune to insertion

or evasion attacks on this level.

4.1 Simple Insertion Attacks

There are many ways that an attacker can send an IP packet that only an IDS

will accept. We collected candidate methods by examining the IP driver source

code of the 4.4BSD operating system. Any condition that causes 4.4BSD to

drop a received packet must be accounted for in an intrusion detection system.

An inconsistency between 4.4BSD and an IDS represents a potential insertion

or evasion attack against that IDS. Figure 8 lists all the points in FreeBSD 2.2's

\ip input" routine that discard received datagrams.

4.1.1 Bad Header Fields

The easiest way for an IP datagram to be discarded by an endpoint is for it to

have an invalid header �eld. The header �elds of an IP packet are described in

RFC731[7].

One problem with attempting to use packets with bad header �elds for in-

sertion attacks is that doing so often prevents the packet from being forwarded

by Internet routers. This makes it di�cult to use such packets for an attack,

unless the IDS is situated on the same LAN as the attacker (in which case the

17

attacker can already manipulate the IDS via packet forgery). A good example

is the \version" �eld; assigning a value other than 4 to this �eld will prevent

the packet from being routed.

Another problem with using bad header �elds is the fact that some of them

need to be correct for the packet to be parsed correctly (\correctly" here meaning

\in the manner intended by the attacker"). For instance, incorrectly specifying

the size of the IP packet itself, or the size of its header, may prevent the IDS

from locating the transport layer of the packet.

One IP header �eld that is easy to neglect is the checksum. It may seem

unnecessary for an IDS to verify the accuracy of the checksum on each captured

IP packet; however, a datagram with a bad checksum will not be processed

by most IP implementations. An IDS that does not reject packets with bad

checksums is thus vulnerable to a very simple insertion attack.

A harder problem to solve is the TTL �eld. The TTL (time to live) �eld

of an IP packet dictates how many \hops" a packet can traverse on its way to

its destination. Every time a router forwards a packet, it decrements the TTL.

When the TTL runs out, the packet is dropped. If the IDS is not on the same

network segment as the systems it watches, it is possible to send packets that

only the IDS will see by setting the TTL just long enough for the packet to reach

the IDS, but too short for the packet to actually arrive at its destination.[17]

A similar problem occurs in relation to the \Don't Fragment" (DF) ag in

the IP header. The DF ag tells forwarding devices not to split a packet up into

fragments when the packet is too large to be forwarded, but instead to simply

drop the packet. If the maximum packet size of the network the IDS is on is

larger than that of the systems it watches, an attacker can insert packets by

making them too large for the destination network and setting the DF bit.[17]

Both of these problems can lead to ambiguities that are only solveable if the

IDS has an intimate knowledge of the topology of the network it is monitoring.

4.1.2 IP Options

The IP checksum problem is fairly simple to solve; an IDS can reasonably assume

that if the checksum is wrong, the datagram will not be accepted by the end-

system it's addressed to. A trickier problem is that of parsing IP options. This

is more likely to vary between hosts, and the interpretation of options requires

specialized processing.

For example, most end-systems will drop a packet that is \strict source

routed"[9] when the host's own address is not in the speci�ed source route. It

is reasonable for an IDS to drop such packets, avoiding an insertion attack.

However, many operating systems can be con�gured to automatically reject

source routed packets. Unless the IDS knows whether a source-routed packet's

destination rejects such packets, the correct action to take is ambiguous.

Examination of source route options on IP packets may seem like an obvious

requirement for a security program. However, there are other options that must

be accounted for that are less obviously relevant. For instance, the \timestamp"

option requests that certain recipients of the datagram place a timestamp within

18

Line Option Description

837 Any Bad option length

858 Source Route Option o�set is less than `4'

866 Strict Source Route This host is not one of the listed hops

886 Source Route This host is con�gured to drop source routed

packets

911 Source Route No route to next hop in route

927 Record Route Option o�set is less than `4'

943 Record Route No route to next hop

957 Timestamp Option length is too short

960 Timestamp Timestamp recording space is full and the

overow counter has wrapped back to zero

971 Timestamp Not enough record space to hold timestamp

and IP address

985 Timestamp Not enough record space to hold timestamp

and IP address

995 Timestamp Bad timestamp type given

Figure 9: FreeBSD 2.2 ip dooptions() packet discard points

the packet. The code that processes the timestamp option can be forced to

discard the packet (if the option is malformed). If the sni�er does not validate

the timestamp option in the same manner as the end systems it watches, the

inconsistency can be exploited. Figure 9 lists all the places in which FreeBSD

2.2's option processing code discards incoming datagrams.

Most IP option processing problems in the 4.4BSD option processing code

results in the transmission of an ICMP error message, notifying the sender of

the errant datagram of the problem. An IDS could potentially listen for such

messages to determine whether an oddly-speci�ed option is correct. This is not

always reliable; some operating systems (Sun Solaris, for instance) will rate-limit

ICMP, suppressing the error messages. Furthermore, tracking ICMP responses

to datagrams bearing options requires the IDS to keep state for each IP packet;

this will consume resources and potentially allow an attacker an avenue for a

denial of service attack.

4.2 MAC Addresses

Although obviously not an IP problem per se, the same implications for insertion

attacks exist due to link-layer addressing. An attacker on the same LAN as a

network monitor can direct link-layer frames to the IDS, without ever allowing

the host speci�ed as the IP destination to see the packet.

If the attacker knows the link-layer address of the IDS, she can simply address

her fake packet to the IDS. No other system on the LAN will process the packet,

19

10.0.0.1 / AB:AD:CA:FE:00:01

A T T X A C K

Sent to 10.0.0.1 at
Ethernet
AB:AD:CA:FE:00:01

�� ��

�
�
�
�

end-system monitor

Ethernet

attacker

10.0.0.2 / AB:AD:CA:FE:00:00

ATTACK ATTXACK

Sent to 10.0.0.1 at
Ethernet
AB:AD:CA:FE:00:00

Figure 10: Insertion Attacks at the Link Layer

but, if the IDS doesn't check the MAC address on the received packet, it won't

know this. Figure 10 shows an example of an attacker that inserts a character

in the IDS by directing a packet to the IDS via the Ethernet link-layer.

Even if the attacker doesn't know the link-layer address of the network mon-

itor, she can exploit the fact that the network monitor is operating in promis-

cuous mode by addressing the frame to a fake address. Again, unless the IDS

veri�es the destination address in the IP header against the correct link-layer

address (and can do so reliably), it can be fooled by falsely-addressed link-layer

frames.

4.3 IP Fragmentation

IP packets can be broken into smaller packets, and reassembled at the destina-

tion. This is termed \fragmentation", and is an integral part of the IP protocol.

IP fragmentation allows the same information to travel over di�erent types of

network media (which may have di�erent packet size limits) without limiting

the entire protocol to an arbitrary small maximum packet size. A detailed

explanation of IP fragmentation can be found in Stevens[8], or in RFC791[9].

Because end-systems will reassemble a stream of IP fragments, it is impor-

tant that a network monitor correctly reassemble fragments as well. An IDS

that does not correctly reassemble fragments can be attacked simply by ensur-

ing that all data is exchanged between machines using arti�cially fragmented

packets.

4.3.1 Basic Reassembly Problems

Streams of IP fragments usually arrive in order. The last fragment in a stream

is clearly marked (the IP header contains a ag that speci�es whether more

fragments follow a given packet). However, even though it rarely happens, the

20

protocol allows fragments to arrive in any arbitrary order. An end system must

be able to reassemble a datagram from fragments that arrive out of order.

Because fragments usually arrive in order, it's easy to make the mistake of

assuming that they always will. An IDS that does not properly handle out-

of-order fragments is vulnerable; an attacker can intentionally scramble her

fragment streams to elude the IDS. It's also important that the IDS not attempt

to reconstruct packets until all fragments have been seen. Another easily made

mistake is to attempt to reassemble as soon as the marked �nal fragment arrives.

Another signi�cant problem is the fact that received fragments must be

stored until the stream of fragments can be reassembled into an entire IP data-

gram. An IDS can be attacked by ooding the network with partial, fragmented

datagrams, which will never be completed. A naive IDS will run out of memory

as it attempts to cache each fragment, since the fragmented packets are never

completed.

End-systems must deal with this problem as well. Many systems drop frag-

ments based on their TTL, to avoid running out of memory due to over-full frag-

ment queues. An IDS that eventually drops old, incomplete fragment streams

must do so in a manner consistent with the machines it's watching, or it will

be vulnerable to insertion (due to accepting fragment streams that end-systems

have dropped already) or evasion (due to dropping fragments that end-systems

have not yet discarded) attacks.

4.3.2 Overlapping Fragments

It has long been known that there are serious security implications arising from

interactions between fragmentation and network access control devices (like

packet �lters). Two well-known attacks involving fragmentation allow attackers

to potentially evade packet �lters by employing pathological fragment streams.

The �rst of these attacks involves simply sending data using the smallest frag-

ments possible; the individual fragments will not contain enough data to �lter

on.

The second problem is far more relevant to ID systems. It involves frag-

mentation overlap, which occurs when fragments of di�ering sizes arrive out of

order and in overlapping positions. If a fragment arriving at an end-station

contains data that has already arrived in a di�erent fragment, it is possible that

the newly arrived data may overwrite some of the old data.

This presents problems for an IDS. If the IDS does not handle overlapping

fragments in a manner consistant with the systems it watches, it may, given

a stream of fragments, reassemble a completely di�erent packet than an end-

system in receipt of the same fragments. An attacker that understands the

speci�c inconsistency between an end-system and an IDS can obscure her attack

by couching data inside of overlapping fragment streams that will be reassembled

di�erently on the two systems.

Overlap resolution is further complicated by the fact that data from con-

icting fragments is used di�erently depending on their positions. In some

situations, conicts are resolved in favor of the new data. In others, the old

21

NT and Solaris see "ATTACK"
C H

T KAA T

T KAA T

I C

Reverse Overlap

Forward Overlap

Should Always Resolve
to "ATTACK", never "ATTICK"

Most OS’s will resolve this to
"ATTACH", but Windows

Figure 11: Forward and Reverse Overlap

Operating System Overlap Behavior

Windows NT 4.0 Always Favors Old Data

4.4BSD Favors New Data for Forward Overlap

Linux Favors New Data for Forward Overlap

Solaris 2.6 Always Favors Old Data

HP-UX 9.01 Favors New Data for Forward Overlap

Irix 5.3 Favors New Data for Forward Overlap

Figure 12: IP fragment overlap behavior for various OS's

data is preferred and the new data is discarded. An IDS that does this incor-

rectly is vulnerable to evasion attacks. Figure 11 shows the di�erent scenarios

involved in fragmentation overlap.

4.3.3 E�ects of End-System Fragmentation Bugs

ID systems aren't the only IP implementations that can incorrectly handle over-

lapping fragments. The IP drivers in end-systems can have bugs as well. The

complexity of IP fragment reassembly makes the existence of incorrect imple-

mentations quite likely. Unless the IDS knows exactly which systems have non-

standard drivers, it is incapable of accurately reconstructing what's happening

on them.

For example, Windows NT resolves overlapping fragments consistently in fa-

vor of the old data (we were unable to create a fragment stream that forced Win-

dow NT to rewrite a previously received fragment). This di�ers from 4.4BSD,

which resolves conicts as suggested by the standard (in favor of the new data in

cases of forward overlap)[10]. Figure 12 gives examples of how several popular

operating systems resolve overlap.

22

The end result is that fragmentation reassembly is di�erent on the end-

system depending on the operating system. Unless the IDS knows which OS

the system is running, it will have absolutely no way of knowing what form of

conict resolution was performed, and thus no conclusive evidence of what was

actually reassembled.

4.3.4 IP Options in Fragment Streams

IP packets can bear options. When an IP packet is fragmented, the question

arises as to whether the options from the original packet should be carried on all

the fragments. RFC791[9] dictates that certain IP options are to be present in

every fragment of a datagram (for example, the \security" option), and others

must appear only in the �rst fragment.

A strict implementation of IP could discard fragments that incorrectly present

options. Many implementations do not. If the IDS doesn't behave exactly like

the machines it's watching in this respect, it will be vulnerable to insertion and

evasion attacks.

4.4 Forensic Information from IP Packets

It is an unfortunate fact that the IP version 4 protocol is in no way authenti-

cated. This poses some problems to ID systems attempting to collect evidence

based on information seen in IP headers; anyone can forge an IP packet appear-

ing to come from some arbitrary host.

This problem is particularly severe with connectionless protocols. In connec-

tion-oriented protocols, a weak conclusion can be drawn as to the origin of a

session based on whether a valid connection is created; the sequence numbers

employed by protocols like TCP provide at least cursory assurance that the

attack is originating at the address it appears to come from. An IDS can

observe that a connection uses consistantly correct sequence numbers and have

a reasonable assurance that it's not being blindly spoofed.

Unfortunately, no such assurance exists with connectionless protocols; an

attack against the DNS, for instance, could be sourced from any address on the

net. It is important that operators of ID systems be aware of the questionable

validity of the addressing information they're given by their system.

23

5 TCP Transport-Layer Problems

A large portion of the attacks detected by ID systems occur over TCP connec-

tions. This imposes the requirement that an IDS be able to reconstruct the ow

of data passing through a stream of TCP packets. If the IDS can't do this in a

manner consistent with end systems it's watching, it is vulnerable to attack.

For normal TCP connections, initiated by innocuous network applications

like \telnet", this is not di�cult. Against an attacker, who is stretching the

TCP protocol to its limits (and, in exploiting OS bugs, beyond those limits) to

avoid detection, the problem is far more di�cult.

There are many di�erent ways to implement a TCP connection monitor.

Each has its advantages, and each has serious aws. The lack of a canonical

\Right Way" to process a captured stream of TCP packets is a major problem

with network ID systems.

5.1 De�nition of Terms

TCP connection monitoring is a complicated subject. In order to simplify our

discussion, we de�ne several terms describing information used by the monitor to

track and record information owing through a TCP session. For the most part,

these terms are synonymous with those used by the BSD TCP implementation.

Every TCP connection has four identi�ers (two for the client, two for the

server) which distinguish it from any other connection on the network. These

are the client (or source) and server (or destination) IP addresses, and the client

and server TCP port numbers. Two connections cannot exist on the network

that share these identi�ers. We'll refer to this information as the \connection

parameters".

The TCP protocol speci�cation (RFC793[12]) de�nes several \states" that

any given connection can be in. In this paper, we refer only to states observable

by an IDS (those involving the actual exchange of data between two hosts).

The vast majority of all possible connections exist in the \CLOSED" state,

meaning that no connection currently exists using those parameters. An active,

established connection is said to be in \ESTABLISHED" state. We'll introduce

other states when they become relevant to our discussion.

TCP implements a reliable, sequenced stream protocol. By \reliable", we

mean that each end of a connection can determine whether data it has sent was

successfully received, and can do something to remedy the situation when it

isn't. TCP is \sequenced" because it employs \sequence numbers" to determine

where any piece of data represented in a packet belongs within a stream.

In order for an IDS to reconstruct the information owing through a TCP

connection, it must �gure out what sequence numbers are being used. We

call the process that an IDS goes through to determine the current valid se-

quence numbers for a connection \synchronization". A scenario in which the

IDS becomes confused about the current sequence numbers is termed \desyn-

chronization".

24

When an IDS is desynchronized from a connection, it cannot accurately re-

construct the data being passed through the connection. In many cases, ID

systems become completely blinded (not reconstructing any data from the con-

nection) when this occurs. Thus, a major goal of an attacker is to desynchronize

the IDS from her connections.

Along with sequence numbers, TCP tracks several other pieces of information

about a connection. TCP de�nes a ow-control mechanism that prevents one

side of a connection from sending too much data for the other side to process;

this is tracked through each side's \window". TCP also allows for out-of-band

data to be sent in a stream, using the \urgent pointer".

This collection of state information can be represented internally on an end-

system in any manner. We refer to the abstract concept of the block of infor-

mation that an implementation must manage to follow a single connection as

a \TCP control block", or \TCB". A network IDS must maintain a TCB for

every connection that it watches.

5.1.1 IDS State Transition

TCBs are only useful for connections that are not (in fact) in CLOSED state.

Because it would be infeasible for an IDS to maintain a TCB for every possible

connection, any network IDS de�nes a mechanism by which TCBs can be created

for newly detected connections, and destroyed for connections that are no longer

relevant.

In our discussion of IDS TCP problems, we isolate three di�erent points at

which the processing of a connection by an IDS can be subverted. These are

TCB creation (the point at which an IDS decides to instantiate a new TCB for a

detected connection), stream reassembly (the process an IDS uses to reconstruct

a stream associated with an open TCB), and TCB teardown (the point at which

the IDS decides to retire a TCB).

Contributing to attacks against each of these three points are data insertion

attacks, which can allow an attacker to confuse the IDS as to what data is

actually arriving at the end-system. In some cases, such as within the context

of stream reassembly, data insertion attacks make the reliable monitoring of

a TCP session practically impossible; it is thus important the the IDS not be

vulnerable to insertion attacks. This is not an easy goal to achieve.

5.2 Simple Insertion Attacks

As with the IP protocol, there are several di�erent ways in which a single packet

can be inserted into an IDS. TCP input processing is complex, and there are

many di�erent cases that can cause a received packet to be dropped. As always,

if an IDS doesn't process TCP packets in the same manner as the end-systems

it's monitoring, it is potentially vulnerable to insertion attacks.

As with our analysis of IP monitoring, we used the source code to the 4.4BSD

kernel to obtain candidate cases for potential insertion attacks. Again, any point

in 4.4BSD's tcp input() function that causes a received packet to be dropped

25

without complete processing was identi�ed as a possible problem. Figure 13 lists

points in FreeBSD 2.2's tcp input() code where incoming segments are dropped.

A TCP segment is acknowledged if the receiving system generates a mes-

sage in response to the segment; when this occurs, we indicate whether this is

via an RST or ACK message. The transmission of a message in response to a

bad segment is signi�cant because an IDS could potentially detect invalid seg-

ments by examining the manner in which they are acknowledged, though this is

complicated both by resource and e�ciency issues, as well as the potential for

inconsistant behavior across di�erent operating systems.

5.2.1 Malformed Header Fields

Data from a TCP packet can be extracted and used in reassembly without

looking at many of the header �elds. This makes it dangerously easy to design

a TCP session monitor that is vulnerable to packet insertion; it is important to

validate the header �elds of a TCP packet before considering its data.

One very easily overlooked �eld is the \CODE", which determines the type

of message being sent in a given TCP segment. The TCP code is speci�ed as a

series of binary ags. Certain combinations of these ags are invalid, and should

result in a discarded packet. Additionally, many TCP implementations will not

accept data in a packet that does not have the \acknowledge" (\ACK") ag set.

According to the TCP speci�cation, TCP implementations are required to

accept data contained in a SYN packet. Because this is a subtle and obscure

point, some implementations may not handle this correctly. If an IDS doesn't

consider data in a SYN packet, it is vulnerable to a trivial evasion attack; if it

does, it may be vulnerable to insertion attacks involving incorrect end-system

implementations.

Another often overlooked TCP input processing issue is checksum compu-

tation. All TCP implementations are required to validate incoming packets

with the Internet checksum. Many ID systems fail to perform this check; pack-

ets can be inserted into these systems simply by sending TCP segments with

intentionally corrupt checksums.

5.2.2 TCP Options

As in IP, it is important that the IDS process TCP options correctly. Unfor-

tunately, processing of TCP options is signi�cantly trickier than processing IP

options. One reason for this is the fact that several TCP options have only

recently been created (timestamp and window scale, for instance). Another is

the fact that TCP speci�es rules for when a TCP option can appear within the

context of a connection. Certain options can be invalid in certain connection

states.

RFC1323[13] introduces two new TCP options designed to increase the re-

liability and performance of TCP in high-speed environments. With these new

26

Line Acknowledged? Condition

295 No Actual received packet too short

312 No Bad checksum

323 No O�set too Short (into TCP header) or too long

331 No Actual received packet too short

369 RST No listening process

382 RST No listening process

384 No Connection is in CLOSED state

404 No Packet other than SYN received in LISTEN state

409 RST ACK packet received in LISTEN state

423 No Can't track new connections

628 No Received RST packet in LISTEN state

630 RST ACK packet received in LISTEN state

632 No Any packet without SYN received in LISTEN state

639 No Broadcast or Multicast SYN received

643 No Out of resources

655 No in pcbconnect() failure

662 No Out of resources

773 No ACK packet, bad sequence numbers

789 No In SYN SENT state, received packet other than SYN

796 No In SYN SENT state, received packet has bad CC.ECHO

936 No In TIME WAIT state, packet has bad CC option

945 No Any other packet received in TIME WAIT state

979 ACK Bad timestamp (too old)

993 No In T/TCP, no CC or bad CC on non-RST packet

1048 RST Listening user process has terminated

1087 ACK Packet is out of receive window

1156 No ACK bit not set on non-SYN data packet

1175 RST ACK packet, bad sequence numbers

1234 No Duplicate ACK

1300 ACK ACK packet sent out of window

1443 ACK In TIME WAIT state, received ACK

Figure 13: FreeBSD 2.2 tcp input() packet drop points (netinet/tcp input.c)

27

options came the possibility that TCP options could appear on packets that

were not SYN segments, a departure from the previous convention. RFC1323

dictates that options can only appear in non-SYN segments if the option has

been speci�ed and accepted previously in that connection.

Because certain TCP implementations may reject non-SYN segments con-

taining options not previously seen, it's important that the IDS not blindly

accept such a packet. On the other hand, some end-systems may simply ig-

nore the bad options, but continue to process the packet; if the IDS doesn't

correctly determine what the end-system has done, it will either be vulnerable

to an insertion attack or another trivial packet evasion attack.

Another concept de�ned by RFC1323 is PAWS, or \protection against wrap-

ped sequence numbers". Systems implementing PAWS track timestamps on

segments; if a segment is received that contains a timestamp echo that is older

than some threshold time, it is dropped. An attacker can trivially create a TCP

segment with an arti�cially low timestamp, which will cause PAWS-compliant

TCP stacks to drop the packet without further processing.

Not only does the IDS need to know whether the end-system supports PAWS,

but it also needs to know what the end-system's threshold value for timestamps

is. Without this information, an IDS may erroneously process invalid TCP

segments, or, even worse, make an incorrect guess as to the validity of a segment

and enable evasion attacks.

5.3 TCB Creation

The �rst point at which TCP session monitoring can be subverted is in TCB

creation. The TCB creation policies of an IDS determine the point at which it

begins recording data for a given connection, as well as the initial state (sequence

numbers, etc) used to synchronize the monitoring with the actual session.

TCB creation is a troublesome issue. There are many di�erent methods that

can be employed to determine when to open a TCB, and none of the straight-

forward methods is without problems. Some techniques are obviously inferior to

others, however, and it's important to indicate which these are. TCB creation

establishes the initial state of a connection, including its sequence numbers; the

ability to forge fake TCBs on the IDS can allow an attacker to desynchronize

future connections that use the same parameters as the forged connection.

TCB creation as a concept revolves around the TCP three-way handshake

(or \3WH"), which is an exchange of TCP packets between a client (the \active

opener" of a connection) and server (the \passive opener"). The 3WH estab-

lishes the initial sequence numbers used for that connection, along with any

other parameters (the use of running timestamps, for instance) that may be

important.

There are very few options available to an end-system in implementing TCB

creation; a TCB cannot be completely opened until a three-way handshake is

completed successfully. Without the 3WH, the two ends of a connection have

no agreed-upon sequence numbers to use, and will be unable to exchange data.

28

An IDS, on the other hand, has many options. ID systems can attempt to

determine the sequence numbers being used simply by looking at the sequence

numbers appearing in TCP data packets (we refer to this as \synching on data"),

or it can rely entirely on the 3WH. Compromises can be made to either approach;

information from a 3WH can be used, but not relied upon, by the IDS, and the

IDS does not necessarily need to wait for an entire 3WH before opening a TCB.

We attempt to outline all the straightforward mechanisms for establishing

TCBs on an IDS here. This is by no means a complete list of all the ways this

task can be accomplished, but these are the techniques that we expect to see

utilized in typical ID systems.

5.3.1 Requiring Three-Way Handshake

The �rst decision for IDS designers to make is whether or not to rely completely

on the three-way handshake for TCB initiation. An IDS that relies on the 3WH

will not record data in a connection for which it did not observe a handshake.

This has a few distinct disadvantages. The �rst and most obvious is the fact

that the IDS will miss entirely any TCP connection for which it does not see the

3WH. This obviously presents problems at program initialization time (the IDS

will only be able to see connections that start after it does), but also presents a

serious opportunity for connection evasion by an attacker who can prevent the

IDS from seeing the 3WH.

Another problem occurs in combination with TCP reassembly. If an IDS

uses the 3WH to determine the initial sequence numbers of a connection, and

then validates data against those sequence numbers, it can potentially be tricked

into desynchronization by an attacker who forges a realistic-looking (but fake)

handshake. If the IDS records the sequence numbers from the handshake, a real

connection, using di�erent sequence numbers but the same parameters, will be

undetectable as long as the attacker-created TCB is open.

TCP options compound this problem. In order to correctly deal with TCP

extensions such as PAWS, the IDS must see the three-way handshake (the hand-
shake determines whether the use of certain options is legitimate with the con-

nection). If the IDS fails to detect this, it will be vulnerable to insertion attacks

against some operating systems (notably 4.4BSD).

The E�ects of Filtering on Handshake Detection Many security-con-

scious networks have network �ltering in place that makes it di�cult for a remote

attacker to send packets to the network that have source addresses of machines

behind the �lter. This technique, which is referred to as \inside-outside" �ltering

or \spoof-protection", makes some attacks against TCB creation harder; the

attacker, trying to trick the IDS into opening or desynchronizing a TCB, cannot

easily forge server response packets.

An IDS can take advantage of this by trusting packets that appear to orig-

inate from machines behind such �lters (the IDS assumes that the presence of

these �lters makes forging such packets impossible). Trusted packets can be

used as a reliable indicator of connection state.

29

It's important to base the decision on whether to \trust" a packet o� the

source address on the packet, and not on the type of TCP message it contains.

An IDS that \trusts" SYN+ACK packets, assuming that they are server re-

sponse messages and thus protected by packet �lters, cannot accurately detect

attacks against network clients (in which the �ltered addresses are the clients,

not the servers).

Of course, the IDS must be con�gured to know which addresses are trust-

worthy and which aren't. An IDS which blindly relies on the fact that addresses

on its own LAN are spoof-protected will be completely vulnerable if no actual

spoof protection exists. The con�guration of the IDS must be consistent with

that of the actual packet �lters.

Requiring Full Handshake An IDS that requires a full 3WH will not record

data for a connection until it sees and accepts all 3 packets in the three-way

handshake. Two of these packets are sent by the client (and thus, for server

attacks, can be considered under the complete control of an attacker), and 1

of them is sent by the server. In TCP terminology, this means that the IDS

doesn't start recording until the connection enters ESTABLISHED state.

As mentioned previously, requiring a complete handshake makes it danger-

ously easy to miss connections (due to packet evasion techniques, simple per-

formance problems on the TCP monitor that cause it to miss packets, or even

attacker-induced performance problems).

Allowing Partial Handshake An IDS that requires at least a partial 3WH

will not record data for a connection until it sees some portion of the hand-

shake occur. Evidence of a three-way handshake validates TCB initiation (we'll

see that there are problems with blindly creating TCBs to synch up to data

streams), and potentially reduces the ability of an attacker to trick the system

into creating false TCBs. Requiring only partial handshakes also decreases the

probability that a connection will be missed due to packet drops under load.

The question that then arises is \what portion of the three-way handshake

needs to be seen by the IDS before a TCB is created?". An IDS can create a

TCB when it sees the initial connection solicitation (the client SYN), or when

it sees the server return a positive response (the server SYN+ACK). In the

presence of inside-outside �ltering, it can be di�cult for an attacker to spoof the

server response; server SYN+ACK responses are thus a more reliable indication

that a connection is occurring. If an attacker cannot spoof the server response,

the SYN+ACK also contains the valid sequence numbers for the connection,

allowing the IDS to more accurately initialize the TCB.

In either case, it's important to note that until the handshake is completed,

a connection doesn't actually exist. The only indication an IDS has that a

connection isn't being spoofed is when then the client responds to the server

SYN+ACK with an ACK con�rming the server's initial sequence number. If

an IDS uses partial handshakes to open TCBs, it can be tricked into opening

TCBs for nonexistent connections.

30

5.3.2 Data Synchronization

The alternative to requiring a three-way handshake to open a TCB is to deduce

the initial state of a connection by looking at data packets, presumably after

a connection has been opened. Since the IDS is not an active participant in

the connection, it doesn't necessarily even have to consider 3WH packets; it is

entirely feasible to track normal connections simply by looking at ACK packets

(packets containing data).

The primary advantage of this technique, which we refer to as \synching on

data", is that the sni�er picks up more data than systems that require hand-

shakes. The system can recover from the loss of an important 3WH packet, and

can detect connection that began before the program was started. Unfortu-

nately, synching on data creates the possibility that the sni�er will accept data

that doesn't correspond to any open connection.

Worse still, ID systems that synch on data and are strict about sequence

number checking can be desynchronized by an attacker who pollutes the ob-

servable connection state with forged data before initiating her attack.

Using SYN Packets A potential antidote to this problem is to allow the

IDS to synch on data, but have it pay attention to 3WH packets that occur

sometime after it starts recording data. These systems will initialize connection

state from the �rst observed data packets, but will re-initialize themselves if they

see evidence that a real 3WH is being performed (the 3WH is then presumed

to set the real state, and previous state and data recorded should be regarded

as intentionally faked).

It is important that this technique be implemented reliably. Because the pro-

cess of combining data synchronization with handshake synchronization neces-

sarily allows the monitor to resynchronize the connection based on some packet

input, poor implementations can result in TCP session monitors that can be

desynchronized (due to falsely injected 3WH packets) at will by an attacker.

One poor implementation strategy relies solely on client SYN packets to

resynchronize the connection. If a SYN packet is received sometime after the

TCB is opened, the IDS resets the appropriate sequence number to match that

of the newly received SYN packet. An attacker can inject fake SYN packets at

will; all she needs to do is send a SYN packet with a completely invalid sequence

number, and the IDS will be desynchronized. Legitimate data being exchanged

on the connection will no longer (as far as the IDS is concerned) have valid

sequence numbers, and the IDS, discarding the valid data, will be blinded.

One simple way to address this problem is to only accept the �rst SYN

packet seen on a connection. Presumably, this will be the legitimate three-way

handshake packet, and not a forged desynch attempt.

This does not work. There are three major problems with this approach:

the IDS remains vulnerable to desynch attacks on connections that start before

the program does (it never examines the original 3WH, so no legitimate SYN

will ever appear on the connection), the IDS has no reliable way to determine

whether any given SYN is in fact the �rst SYN to appear on the connection

31

(packet drops complicate this), and, most importantly, an attacker can perma-

nently desynchronize the connection by inserting an invalid SYN packet before

the legitimate connection starts.

A better approach is to rely on SYN+ACK packets to resynchronize. As

long as the attacker can't forge a valid looking SYN+ACK packet from the

server, the IDS can make the assumption that SYN+ACKs from the server are

legitimate and represent real connection handshakes.

There are problems associated with this too. If the IDS is observing a

stream of data, for which it has not yet detected a three-way handshake, it

does not necessarily know which host is the client and which is the server. The

observation of a 3WH determines which end is the client and which is the server.

An attacker can forge a SYN+ACK packet that makes it appear like her end

of the connection is the server; if the IDS cannot determine correctly whether

that is the case, it will be desynchronized.

Ignoring SYN Packets A TCP monitor need not resynchronize on 3WH

packets; SYN packets can be ignored entirely, and data be used as the basis for

sequence number initialization. If this is implemented in a naive fashion, any

forged data packet can potentially desynchronize the connection. A smarter

implementation might only consider (for synchronization purposes) data packets

that originate from local hosts, assuming that the attacker cannot forge packets

appearing to come from these hosts.

5.4 TCP Stream Reassembly

The most di�cult task for a network intrusion detection system to accomplish

is the accurate reconstruction of the actual data being exchanged over a TCP

connection. TCP provides enough information for an end-system to determine

whether any piece of data is valid, and where that data belongs in the context

of the connection. Even so, the 4.4BSD code to manage this process is over

2000 lines long, and is some of the most involved in the entire TCP/IP protocol

implementation.

The end-points of a connection have a distinct advantage over an observing

monitor | if they miss data, the other side of the connection will automatically

retransmit it after some period of time. Both participants of the connection can

actively manipulate the other, to ensure that their data is exchanged correctly.

The TCP session monitor does not have this luxury. If it misses a packet, it

cannot (practically) request retransmission | moreover, it cannot easily detect

whether a missing piece of data is due to out-of-order packet arrival or a dropped

packet. Because the IDS is strictly a passive participant in the connection, it is

quite easy for it to miss data.

This problem is made even more acute by the fact that proper reassembly of

a stream of TCP packets requires accurate sequence number tracking. If an IDS

misses enough packets, it can potentially lose track of the sequence numbers.

Without some recovery mechanism, this can permanently desynchronize the

32

connection. The techniques used by an IDS to recover from packet loss (and

resynchronize with the connection) can also be attacked.

5.4.1 Basic Reassembly Problems

Some ID systems do not use sequence numbers at all. Instead, they insert data

into the \reassembled" stream in the order it is received. These systems do

not work. An attacker can blind such a system simply by accompanying her

connection with a constant stream of garbage data; the output of the monitor's

TCP driver will be meaningless.

These systems do not work even on normal TCP streams. The arrival of TCP

segments out of order is a normal occurrence (happening whenever the route

between TCP endpoints changes and reduces the latency of the path between

them)[18]. Unfortunately, when this happens, the ID system does not correctly

re-order the packets. The output of the system is again inaccurate. Of course,

an attacker could also send her stream of data out of order; the end-system will

correctly reassemble, and the e�ectively crippled IDS will see meaningless data.

5.4.2 Challenges To Reassembly

Even if the system does check sequence numbers, there is no assurance that a

given segment (even with correct sequence numbers) will be accepted by the end-

system to which it is addressed. Several issues can cause a TCP implementation

to drop properly sequenced data. The simplest of these are the IP and TCP

insertion problems, but other, higher-level issues present problems as well.

One major problem the IDS must cope with is each end-system's advertised

window. The \window" of a connection represents the number of bytes of data

it will accept, preventing the other end of the connection from sending too much

data for it to bu�er. Data sent past the window is discarded. In addition, the

time at which the IDS detects the change in the window is di�erent from the

time at which the end-system detects the change and reacts to it. Packets that

arrive within the period of time that the IDS and the end-system are inconsistent

can cause problems. An IDS that does not account for this in some manner is

potentially vulnerable to an insertion attack.

The information available to the IDS from captured packets provides one use-

ful indication of end-system state | the acknowledgment sequence number. The

acknowledgment number represents the next sequence number an end-system

expects to see. Presumably (end-system TCP bugs can break this assumption),

any valid piece of data will eventually be acknowledged by an ACK message.

It may be apparent at this point that an IDS can reliably monitor a stream

simply by waiting for acknowledgment before acting on a piece of data. This

is not as easy at it may seem. The acknowledgment number is cumulative;

it represents the next expected piece of data within the context of the entire

connection. Every segment sent is not necessarily directly acknowledged | even

though an acknowledgment is generated in response to it. Several segments

33

Operating System TCP Overlap Behavior

Irix 5.3 Favors New Data for Forward Overlap

HP-UX 9.01 Favors New Data for Forward Overlap

Linux Favors New Data for Forward Overlap

AIX 3.25 Favors New Data for Forward Overlap

Solaris 2.6 Favors New Data for Forward Overlap

FreeBSD 2.2 Favors New Data for Forward Overlap

Windows NT 4.0 Always Favors Old Data

Figure 14: TCP Overlap Behavior in Various Operating Systems

worth of data can be acknowledged by one ACK; an IDS cannot simply wait for

an acknowledgement to each individual packet it sees.

Another great problem in IDS stream reassembly is the fact that an attacker

can send several identically sequenced packets with varying data. The header

information will not change from packet-to-packet (except the checksum), and

each packet will alter end-system state in exactly the same manner, but only one

of the packets will actually be processed by the destination host. Unfortunately,

only the end-system knows which one was actually processed. There is not

enough information exchanged on the wire for a IDS to determine which packet

was valid.

Worse still, an insertion attack against an IDS coupled with this ambiguity

can allow an attacker to determine which packets will be accepted by the IDS,

by sending segments that the end-system will reject without acknowledging, and

then sending valid packets after some brief delay. The IDS will most likely accept

the bad data and move the sequence space forward, causing it to ignore the valid

data and potentially desynchronizing the IDS from the actual connection. This

is very similar to the TCP hijacking attack described by Laurent Joncheray[14].

5.4.3 Overlap

Like IP fragments, TCP segments can arrive out of order and in varying sizes.

As in IP fragmentation, this can cause new data to overlap old data. As always,

if the IDS does not resolve this problem in a manner consistent with the hosts

it's watching, it will not accurately reassemble the stream of data.

The rules for handling TCP segment overlap are quite similar to those of

reassembling fragmented IP datagrams. In some cases, end-systems will resolve

the conict in favor of the old data; in others, the conict is resolved in favor

of the new data. There is, again, a great potential for bugs here, and, as in

IP reassembly, a bug on either the end-system or the IDS is exploitable by the

attacker. Figure 14 details the overlap resolution behavior of various operating

systems.

Using overlapping TCP segments, it is possible for an attacker to create a

stream of packets that will assemble to a completely innocuous string if sent

34

alone, or to an attack signature if it's accompanied by a single overlapping

segment. Playing with segment overlap allows the attacker to literally rewrite

the packet stream on the destination host, and, unless the IDS resolves overlap

in exactly the same manner as the end-system, it will not see the attack.

5.4.4 Endpoint TCP Overlap Bugs

As in IP fragmentation overlap resolution, there is a large potential for incon-

sistency of implementation between vendors in TCP reassembly code. As an

example, Windows NT resolves conicts in out-of-order TCP segments consis-

tently in favor of the old data, and 4.4BSD resolves conicts as indicated in the

RFC, occasionally in favor of the new data. As with fragmentation reassem-

bly, unless the IDS knows how each system on the network reassembles streams

containing conicting segments, it will be unable to accurately monitor certain

types of end-systems.

5.4.5 Summary of Reassembly Issues

These issues do not present a great problem for most connections; most of the

TCP segments in a normal connection arrive in-order, and there aren't any fake

TCP segments injected into the stream speci�cally to confuse the IDS. However,

in the real world, an attacker trying to evade an IDS will attempt to make the

TCP stream as hard to monitor as possible, and will stretch the limits of the

protocol to do this.

Vulnerabilities in IDS TCP reassembly code are insidious because they are

not immediately obvious; a speci�c problem may manifest itself only when the

IDS is given some pathological sequence of inputs. The majority of the time,

the IDS may appear to be reassembling TCP streams perfectly. Testing IDS

TCP implementations for problems is time consuming and expensive; it's easy

for a vendor to skip this testing almost entirely.

5.5 TCB Teardown

The TCB teardown policies of an IDS determine the point at which the system

ceases recording data from a connection. TCB teardown is necessary because

the state information required to track a connection consumes resources; when

a connection ceases to exist, it no longer makes sense to dedicate resources to

tracking it. A system that did not destroy old TCBs at some point would be

trivially defeatable, simply by ooding it with meaningless connections until it

ran out of resources to track future connections.

In TCP, connections close after they're explicitly requested to do so. Two

TCP messages (RST and FIN) exist speci�cally to terminate a connection. Bar-

ring sudden crashes on both endpoints, TCP connections are only terminated

by the exchange of these messages. Because TCP explicitly provides noti�cation

of terminated connections, it may be logical to design an IDS that uses these

messages to decide when to close a connection TCB.

35

This is not enough to adequately manage the per-connection resource prob-

lem. TCP connections do not implicitly \time out". A connection can be alive

without the exchange of any data inde�nitely. TCP provides a mechanism to

ensure that both hosts are alive, by periodically exchanging messages, but this

mechanism is not commonly used and takes far too long to recognize dormant

connections to be of practical use. Without some method to time out arbitrary

dormant connections, the IDS remains attackable simply by ooding it with

connections that do not explicitly terminate.

The problem with TCB teardown is that an IDS can be tricked into tearing

down a connection that is still active, and thereby force the system to lose state.

Within the context of a pattern matching engine, this means that the stream

of input abruptly terminates. An attacker that can induce the incorrect termi-

nation of the TCB tracking her can prevent pattern matching from working by

abruptly halting pattern matching before the complete attack signature passes

across the network.

On the other hand, an IDS that fails to tear down a TCB for a connection

that really has closed is also vulnerable; as soon as the connection is legitimately

closed, its parameters can be re-used for a new connection with completely

di�erent sequence numbers (technically, the systems must wait for a period of

time before reusing connection parameters [12] | not all operating systems

enforce this). In the absence of synchronization recovery techniques, this can

completely blind the IDS to entire connections.

Because an ID system's TCB teardown policies can be attacked, their design

is relevant to our discussion. We've identi�ed a few options that can contribute

to how an IDS ceases to track connections, and will discuss their rami�cations

here. This is by no means an exhaustive summary of all the possible options.

5.5.1 Using TCP Connection Teardown Messages

One possible way for an IDS to determine when to stop tracking a connec-

tion is to listen for TCP control messages that indicate the connection is being

shut down. Doing so allows an IDS to quickly recover resources for connections

that have actually terminated, and also prevents desynchronization for new con-

nections using the same parameters. Unfortunately, because some connection

termination request messages may be under the control of an attacker, there is

signi�cant risk involved in trusting these messages.

TCP provides two connection teardown messages. The �rst message allows

for \orderly" connection teardown, where both sides of the connection acknowl-

edge the end of the connection and ensure that their data is completely sent

before the connection closes. The second message abruptly terminates a con-

nection due to error.

FIN Processing TCP provides orderly teardown via the FIN message. A

system sending a FIN message is indicating that it has �nished sending data,

and is ready to close the connection. FIN messages are acknowledged, and each

side of the connection sends a message to shut it down.

36

In the presence of inside-outside �ltering, FIN messages are reliable indica-

tors of terminated connections. A connection is not completely terminated until

both sides send a FIN message, and acknowledge the other side's message. An

attacker cannot fake the FIN shutdown of a connection without forging packets

that appear to come from the server.

RST Processing It's not enough for an IDS to rely on FIN messages to

terminate connection TCBs. TCP provides a method to abruptly notify the

other end of a connection that the connection has been closed, using the Reset

(RST) message. RST segments are not acknowledged; the only way to know if

an RST message has been accepted by an end-system is to see if it continues

sending data on the connection. The only way to do this practically within an

IDS is to time the connection out after seeing an RST; however, this means

that an IDS can potentially mistakenly shut down a connection that is alive but

dormant.

The RST problem is more severe due to end-system TCP bugs. Technically,

an RST message is only valid if it is correctly sequenced | RST messages with

spurious sequence numbers (which can be created by an attacker in an e�ort

to illicitly tear down connections) should be ignored. Not all operating systems

check the sequence number on RST messages.

5.5.2 Relying on Timeouts for TCB Teardown

An alternative to using TCP connection teardown messages is to simply time

connections out when they become dormant for some threshold time period.

This prevents the IDS from being fooled by false TCP teardown messages, and

potentially simpli�es the IDS TCP code.

There is a cost to this simplicity | systems that rely on timeouts for TCB

teardown can easily be circumvented. In what has been termed the \Sneakers"

attack (after the famous suspense movie, where Robert Redford evades a sophis-

ticated alarm system by employing a similar technique), the attacker renders

the sum of her movements undetectable to the IDS by waiting for the IDS to

time out between packets.

The Sneakers attack is particularly troublesome because, as we noted previ-

ously, the IDS must employ some form of connection timeout TCB teardown,

as dormant TCP connections can remain established for far longer than the

IDS can devote resources to track them. If an attacker can induce this timeout,

either by waiting long enough or by �lling the IDS with enough interesting (but

meaningless) connections that it is forced to garbage-collect older connections,

she can potentially evade the IDS by causing it to lose state.

Additionally, systems which completely ignore TCP teardown messages can

be desynchronized when the connection is legitimately closed. Even though

the connection has ceased to exist, the IDS maintains a TCB for it until it

times out. If a new connection occurs using the same parameters before the

connection times out on the IDS, the system will be desynchronized, due to the

use of di�erent sequence numbers on the new connection.

37

This attack can be carried out without any specialized code; an attacker

simply uses \telnet" to create a connection, closes the connection, and re-opens

it. If the sequence numbers on her machine change enough between the two

connections, a vulnerable IDS will not be able to track the second connection.

38

6 Denial of Service Attacks

Denial of service attacks against ID systems are severe because, by their very

nature, passive ID systems \fail open" | unlike a good �rewall, access to the

network isn't cut when a monitor system becomes unresponsive. A basic goal,

then, for an attacker is to cause the IDS to fail without losing access to the

machines being attacked.

Some denial of service attacks exist due to buggy software. An IDS that

crashes when it receives a certain bad packet, or a series of bad control mes-

sages, or anything else that can be cued by a remote attacker, can be defeated

instantly. Fortunately, these kinds of bugs are quickly and easily �xed by ven-

dors. Unfortunately, �nding all such bugs requires painstaking software audits.

It is also interesting that some ID systems can themselves be used to launch

denial of service attacks on other systems. An ID system that includes a coun-

termeasure capability, such as the ability to set packet �lters in reaction to

an attack, can be fooled via false positives (due to forged attacks) to react to

attacks that haven't actually occurred.

6.1 Resource Exhaustion

There are many di�erent types of denial of service attacks that are valid against

ID systems. The attacks we'll discuss here all involve resource exhaustion | the

attacker identi�es some point of network processing that requires the allocation

of some sort of resource, and causes a condition to occur that consumes all of

that resource. Resources that can be exhausted by an attacker include CPU

cycles, memory, disk space, and network bandwidth.

The CPU processing capabilities of an IDS can be exhausted because the IDS

spends CPU cycles reading packets, determining what they are, and matching

them to some location in saved network state (for example, an IP fragment

needs to be matched to the other fragments of the datagram it represents).

An attacker can determine what the most computationally expensive network

processing operations are, and force the IDS to spend all its time doing useless

work.

ID systems require memory for a variety of things. TCP connection state

needs to be saved, reassembly queues need to be maintained, and bu�ers of data

need to be created for pattern matching. The system requires memory simply

to read packets in the �rst place. As the system runs, it allocates memory as

needed to perform network processing operations (for example, the receipt of

an IP fragment means that the ID system will need to obtain memory to create

and maintain an IP fragment queue for that packet). An attacker can determine

which processing operations require the ID system to allocate memory, and force

the IDS to allocate all its memory for meaningless information.

At some point, most ID systems will need to store logs of activity on disk.

Each event stored consumes some amount of disk space, and all computers have

a �nite amount of disk space available. An attacker can create a stream of

39

meaningless events and, by having them continually stored, eventually exhaust

all disk space on the IDS, which will then be unable to store real events.

Finally, network ID systems track activity on the networks they monitor.

For the most part, they are capable of doing this only because networks are

very rarely used to their full capacity; few monitor systems can keep up with

an extremely busy network. The ID system, unlike the end-systems, must read

everyone's packets, not just those sent speci�cally to it. An attacker can over-

load the network with meaningless information and prevent the ID system from

keeping up with what's actually happening on the network.

Other resources exist as well, depending on the design of the system. For

instance, in systems that set router �lters in response to attacks, we must con-

sider the fact that the router has a limited capacity for storing �lter entries;

at some point, the router's �lter storage will be completely consumed, and the

system will be unable to add new entries. An ID system that doesn't take this

into account can be defeated by forcing it to spend the router's �lter storage on

reactions to fake attacks.

The basic problem with resource consumption on an IDS is that the system

must simulate the operation of all the machines it's watching, in order to track

what's actually occurring on them. The end-systems themselves only need to

concern themselves with network tra�c that directly involves them. The IDS,

which is spending more resources coping with the network than any other system

on the network, is thus inherently more prone to resource starvation attacks than

the end-systems.

This problem is exacerbated by the fact that most network ID systems op-

erate in \promiscuous" mode, reading all tra�c o� the wire, regardless of its

destination. Resources can be consumed on the IDS by the processing of tra�c

that isn't even destined for a real machine; apart from the network bandwidth

consumed by this tra�c, no other system on the network will be a�ected by

this. Again, performance on the IDS is degraded to an greater extent than on

the end-systems it's trying to track, making it more di�cult for the IDS to keep

up and giving the attacker an edge.

6.1.1 Exhausting CPU Resources

An attacker's goal in exhausting an ID system's computational capability is to

prevent it from keeping up the network. A CPU-starved IDS will not process

captured packets quickly enough and, as these packets �ll the bu�ering capacity

of the operating system, captured data starts being dropped.

An example of why this occurs is useful. On 4.4BSD Unix, packet capture

is accomplished through the \Berkeley Packet Filter" (BPF) device. BPF in-

teracts directly with low level network drivers (such as the Ethernet interface

driver), taking snapshots of packets before they're handed up to the IP layer for

processing. As packets are captured by BPF, they are stored in a kernel bu�er,

where they stay until an application reads them out.

If an application doesn't read data out of the bu�er faster than the bu�er

is �lled up by newly captured packets, space for queuing up captured packets

40

runs out. When this happens, captured packets are necessarily dropped before

the application ever has a chance to examine them.

An attacker can prevent an ID system from keeping up with packet capture

by forcing it to spend too much time doing useless work. In order to do this,

the attacker must identify operations that she can force the IDS to perform that

consume large amounts of processing time.

In many ID systems, this is easy; ine�cient algorithms are used to process,

save, and look up state about network tra�c. The attacker can cause the system

to process information that forces these algorithms to work in their worst-case

conditions.

A concrete example of this is IP fragmentation. As IP fragments arrive, they

must be stored, until all the related fragments arrive. To facilitate reassembly,

most systems store fragments in the order that their data will appear in the

�nal packet. This means that, as each fragment arrives, the system needs to

locate the correct fragment storage area, and then �nd the right place in that

area to store that speci�c fragment.

Many systems use a simple ordered list to store incoming fragments. As new

fragments arrive, the system must locate the correct list for that packet, and

then do a full linear lookup to determine whether the new fragment was already

received and, if not, where in the list the fragment should go. As new fragments

arrive, this list gets longer, and the time required to look up fragments in the

list increases. An attacker can force this process to operate in its worst case by

sending large amounts of tra�c using the smallest possible fragments | large

amounts of CPU cycles will be consumed tracking tiny IP fragments.

Some protocol parsing can be expensive by itself. An IDS that needs to

somehow analyze encrypted tra�c may spend a large amount of time simply

decrypting packets (encryption and decryption can be extremely expensive op-

erations). While the demand for this kind of processing is not now very great,

it will increase as technologies such as IP-sec[11] are deployed.

6.1.2 Exhausting Memory

ID systems require memory to operate. Di�erent types of protocol processing

have di�ering memory requirements. An attacker that can force an IDS to

consume all available memory resources can render the system nonfunctional;

the system may simply quit abruptly when it runs out of memory, or it may

thrash trying to squeeze more space out of slow virtual memory systems, causing

the same e�ects as CPU exhaustion.

An attacker trying to exhaust memory on an IDS examines the system,

trying to determine the points at which the system allocates memory. The

attacker attempts to isolate network processing events that cause the system

to allocate memory for a long duration of time; the attacker then induces this

processing by sending packets that the IDS will be forced to process in that

manner. After being ooded with such packets for some time, the IDS will run

out of memory to process the incoming packets.

41

Some ID systems employ \garbage collection" to automatically reclaim mem-

ory that is not being actively used. Unfortunately, used incorrectly, garbage

collection can present its own problems. A garbage collection system that isn't

aggressive enough in reclaiming memory will not be able to keep up with de-

mand, and will only slow down memory exhaustion attacks. A garbage collec-

tion system that is too aggressive will consume memory that is needed for real

processing, causing the system to incorrectly process network tra�c.

Examples of attackable memory allocations include TCP TCB creation (the

attacker creates a urry of connections to various hosts on the ID system's

network, or, using packet forgery, creates a ood of entirely fake connection)

and TCP reassembly (the attacker sends large amounts of tra�c in streams

of out-of-order data that will need to be reassembled, forcing the system to

consume memory not only for the data but also for reassembly queues).

6.1.3 Exhausting Network Bandwidth

Perhaps the simplest way to starve an IDS of resources is simply to create too

much raw network tra�c for the system's low-level network interface to keep up

with. As each packet arrives, the interface must copy the packet o� the wire and

into a bu�er, interrupt the system, and cause the system to copy the packet into

the kernel. The interface is capable of handling only a limited amount of tra�c

before it is overwhelmed by the load and starts dropping incoming packets.

Although modern network interfaces operate e�ciently enough to keep up

with drastically high network loads, older hardware cannot do so. The point

at which old ISA-bus based network interfaces become saturated is drastically

lower than the point at which the network media itself becomes saturated. If

an attacker creates enough tra�c, she can prevent such interfaces from keeping

up without saturating the network itself.

Targeted packet oods can also work in some circumstances. On switched

networks, it's possible to create large amounts of tra�c that will only be seen

by certain systems. If an attacker can create a ood of packets that will only

be switched to the IDS, she can ood the IDS while maintaining the ability to

communicate with the machines she's attacking.

This type of attack is closely related to CPU exhaustion, and, indeed, many

times the system will run out of CPU cycles long before the network interface is

saturated. Regardless of which component of the system fails �rst, the e�ect is

the same for the attacker; the IDS cannot keep up with the network, and misses

signi�cant packets.

6.2 Abusing Reactive ID Systems

In some circumstances, the IDS itself can become an instrument of denial of

service attacks. If the IDS has a \reactive" countermeasure capability, and

is vulnerable to attacks that create false positives, it can be forced to react

to attacks that don't actually exist. The countermeasures employed can be

subverted to completely block access for legitimate tra�c, or to shut down valid

42

connections. In these cases, the reactive capabilities of network ID systems are

actually doing more harm than good.

The most basic problem with reacting to attacks discovered by monitoring

IP tra�c is that the IP addresses are not always trustworthy. An attacker

can forge tra�c appearing to come from almost any IP address, and, if this

tra�c appears to contain an attack, the ID system may react to it. In some

circumstances, this is very easy to do.

For example, many attacks occur over \connectionless" protocols, for which

the attacker doesn't need to see the responses to her packets. Instead, she simply

creates and blindly sends forged packets, and the IDS is fooled into believing

that the attack is coming from somewhere that it isn't. Good examples of this

include ICMP ping oods, SYN oods, \death" packets (such as the ping-of-

death attack involving large ICMP echo requests), and UDP packet storms.

Even attacks that involve TCP connections can be faked if the IDS doesn't

correctly identify the three-way handshake. If the IDS doesn't require a hand-

shake at all before recording data, TCP attacks can be faked as easily as ping

oods; even if it does, the speci�c manner in which it tracks handshakes can be

attacked for the same e�ect.

The essential issue here is that the attacker can trigger alarms about events

occurring from fake addresses. The IDS, which has no idea what the \real"

source of the attack was, reacts falsely to the forged events by restricting con-

nectivity to the faked addresses. The addresses used by the attacker can be

speci�cally chosen to maximally a�ect overall connectivity (for example, the

attacker can cut o� access to all the network's DNS servers).

The amount of damage that can be caused by such attacks depends on the

manner in which the IDS reacts to attacks in general. Some ID systems limit

themselves to shutting down TCP connections that appear to be vehicles of

attack; these systems can be abused to shut down legitimate connections (by

forging tra�c that makes it appear that an attack is being performed using

those connections), but cannot easily be abused to impact overall connectivity,

unless speci�c TCP connections are vital for the network's connectivity (for

instance, BGP4 routing).

Other systems have more e�ective ways to react to attacks; they modify

router �lters on the y to cut all tra�c from sites that appear to be originating

attacks. These systems pay for that extra power by being vulnerable to more

damaging denial-of-service subversions; an attacker that can cause the IDS to

recognize false attacks can cut all access of to critical network resources by

strategically forging addresses.

Regardless of what countermeasures are actually employed, it is important

to realize that such facilities are dangerous as long as an attacker can forge

attacks. Some types of attacks may never be a legitimate basis for deployment

of countermeasures, simply due to the fact that they can be performed blindly

using forged addresses. Other attacks can only be safely reacted to if the IDS

has a rock-solid network processing implementation.

43

7 Methodology

We support our assertions regarding vulnerabilities in ID systems with the re-

sults of extensive tests against actual, commercially available intrusion detection

systems. The purposes of these tests were to ascertain characteristics of each

subject' s TCP/IP implementation, and to provide concrete examples of actual

attacks that could be performed against them. Our tests were designed to be

easily repeatable, and to illustrate in the most obvious possible manner the

de�ciencies of each tested system.

7.1 Overview

Each of our tests involve injecting packets onto a test network, on which the

subject ID system was running. By tracking the subject's administrative console

output, we were able to observe many characteristics of the system's underlying

TCP/IP implementation. To this extent, all of our tests involved consideration

of the subject as a \black box". All our tests involved the TCP protocol.

In most cases, the tests involved interactions between our injected packets

and a third host, representing a hypothetical \target" of attack. In each test,

this target host was the explicit addressee of all of our packets. The presence

of the target host allowed us to easily create \real" TCP connections for the

subject IDS to monitor.

In addition, the target host also acted as a \control" for our experiments.

The target's reactions to our injected packets allowed us to observe empirically

the behavior of a \real" TCP/IP implementation, and contrast that behavior

to the deduced behavior of the subject IDS.

All of our tests involved mimicking a \PHF" webserver attack. The PHF

attack exploits a speci�c Unix CGI script (\phf") to attempt to gain access to

a webserver. We used PHF because the attack is detected by all our subject

ID systems, and because the attack is easily reproduced using standard TCP

network tools (like \telnet"). In order to reproduce a PHF attack, we sent the

string \GET /cgi-bin/phf?" to the target host.

In each test, we created network conditions that could make it appear as if

a PHF attack was being attempted. In each test, the speci�c packets injected

into the network di�ered subtly. The subject ID system reacted to each test by

either reporting or not reporting a PHF attack. By considering the ID system's

output and the speci�c types of packets used for the test, we were able to deduce

signi�cant characteristics of the subject IDS.

Before conducting complicated or subtle tests against the subject, we con-

ducted a series of \baseline" tests. The purpose of these tests was to ensure that

the subject IDS was con�gured properly and was functioning at the time our

tests were conducted, and that the IDS did in fact detect a PHF attack based

on our PHF reproduction string.

In almost all test cases, a process on the target host ran which accepted

incoming TCP connections on the HTTP port and printed any input obtained

from the machine's TCP stack. By examining the output of this process, we

44

were able to deduce whether the subject IDS should have detected the attack

based on the network conditions we created.

7.2 Tools Used

The primary tool we employed in our tests was CASL, a specialized scripting

language developed at Secure Networks, Inc. that allows for programmable

generation and capture of raw packets. Each of our tests used a CASL script

to inject packets onto the network, and, in most cases, read and parse the

responses. A more detailed overview of CASL is provided in [15].

Our target host ran FreeBSD 2.2, an implementation of 4.4BSD. The 4.4BSD

TCP/IP stack is one of the best documented and most easily obtainable IP

implementations available, and FreeBSD is by far the most popular BSD im-

plementation. FreeBSD 2.2 was, at the time of our testing, the most recent

\stable" release of the operating system.

For each test, we used Hobbit's \netcat" tool[16] to listen on TCP port

80 and print the input from the target host's TCP stack. Hobbit's tool is an

all-purpose, bare-bones diagnostic program that is widely available, popular,

and documented; in its \listening" mode, the tool simply accepts an incoming

connection, and prints each character of data the TCP driver presents to it.

As we ran each test, we observed the speci�c packets being transmitted

on the network using LBL \tcpdump"[19]. Tcpdump is a low-level network

diagnostic tool that passively monitors networks in promiscuous mode, and

prints summaries of each captured packet. We ran the \tcpdump" tool from

the test platform on the �rst execution of each speci�c test script. Tcpdump

provided us with IP-level packet traces to accompany our test results, which

made it easier to discern exactly what was happening on the network during

each of our tests.

Our test network was non-switched 10BaseT Ethernet. The hosts on the

network included the IDS, the target host, and the test platform. The network

was dormant at the time we conducted our tests.

7.3 Test Execution

Each of our tests involved a CASL script, run from an interpreter on the test

platform, which generated and injected packets addressed to the target host.

We de�ne each of these tests in terms of the script's name, its speci�c network

interactions, the IDS characteristic it attempts to ascertain, and its validity to

the 4.4BSD TCP/IP driver (that is, whether our target host completely and

accurately reconstructed the PHF string our test attempted to send).

A test that was not \valid" to 4.4BSD should not have resulted in the de-

tection of a PHF attack by the subject IDS. We suggest that the subject IDS

should not detect attacks in \invalid" tests, and should reliably detect attacks

within the valid ones.

In cases where the IDS failed to detect an attack in either type of test, we

re-initialized the IDS and re-ran the test multiple times. Before concluding that

45

a subject IDS was not detecting our attack signatures, we re-ran the baseline

test to con�rm its operational integrity, and immediately ran the considered

test.

7.4 Test De�nitions

Name baseline-1

Operation Complete a TCP handshake, send the test string in

a single TCP data segment.

Behavior Tested Is the IDS con�gured properly, and does our test

string adequately reproduce a PHF attack to the sub-

ject?

Target Validity Valid

Name baseline-2

Operation Complete a TCP handshake, send the test string in

a series of ordered, 1-character TCP data segments.

Behavior Tested Is the IDS con�gured properly, and does our test

string adequately reproduce a PHF attack to the sub-

ject?

Target Validity Valid

Name frag-1

Operation Complete a TCP handshake, send the test string in a

single TCP data segment which is broken into 8-byte

IP fragments and sent in order.

Behavior Tested Does the subject IDS perform IP fragment reassem-

bly at all?

Target Validity Valid

Name frag-2

Operation Complete a TCP handshake, send the test string in

a single TCP data segment which is broken into 24-

byte IP fragments and sent in order.

Behavior Tested Does the subject IDS perform IP fragment reassem-

bly at all?

Target Validity Valid

Name frag-3

Operation Complete a TCP handshake, send the test string in

a single TCP data segment which is broken into 8-

byte fragments, with one of those fragments sent out

of order.

Behavior Tested Can the subject IDS handle basic out-of-order IP

fragmentation reassembly?

Target Validity Valid

46

Name frag-4

Operation Complete a TCP handshake, send the test string in a

single TCP data segment which is broken into 8-byte

fragments, with one of those fragments sent twice.

Behavior Tested Can the subject IDS handle reassembly when frag-

ments are completely duplicated?

Target Validity Valid

Name frag-5

Operation Complete a TCP handshake, send the test string in

a single TCP data segment broken into 8-byte frag-

ments, sent completely out of order and with an ar-

bitrary duplicated fragment.

Behavior Tested Can the subject IDS handle reassembly in patholog-

ical (but correct) cases?

Target Validity Valid

Name frag-6

Operation Complete a TCP handshake, send the test string in a

single TCP data segment which is broken into 8-byte

fragments, sending the marked last fragment before

any of the others.

Behavior Tested Does the subject IDS correctly wait for all fragments

to arrive before attempting reassembly?

Target Validity Valid

Name frag-7

Operation Complete a TCP handshake, send a stream of frag-

ments containing the signature string with the word

\GET" replaced with the string \SNI". Send a

forward-overlapping fragment rewriting the \SNI"

back to \GET" on the target host.

Behavior Tested Does the subject IDS correctly handle forward over-

lap in IP fragments?

Target Validity Valid

Name tcp-1

Operation Complete a TCP handshake, simulate the disconnec-

tion of the target host from the network, and send

the target string in a series of 1-byte TCP data seg-

ments.

Behavior Tested Does the subject IDS wait for TCP acknowledgment

from the target before acting on data from captured

packets?

Target Validity Inapplicable

47

Name tcp-2

Operation Complete a TCP handshake, send the test string in

a stream of 1-byte TCP data segments where the

sequence number wraps back to zero.

Behavior Tested Does the IDS correctly deal with wrapped sequence

numbers?

Target Validity Valid

Name tcp-3

Operation Complete a TCP handshake, send the test string in

a stream of 1-byte TCP data segments, duplicating

entirely one of those segments.

Behavior Tested Does the IDS correctly handle completely duplicate

TCP segments?

Target Validity Valid

Name tcp-4

Operation Complete a TCP handshake, send the test string

in a stream of 1-byte TCP data segments, sending

an additional 1-byte TCP segment which overlaps a

previous segment completely but contains a di�erent

character.

Behavior Tested Does the subject IDS correctly handle duplicate TCP

segments?

Target Validity Valid

Name tcp-5

Operation Complete a TCP handshake, send the test string,

with the letter `c' replaced with the letter `X', in a

series of 1-byte TCP data segments. Immediately

send a 2-byte TCP data segment that overlaps (for-

ward) the modi�ed letter, rewriting it back to `c' on

the target host.

Behavior Tested Can the subject IDS handle overlap in out-of-order

TCP streams?

Target Validity Valid

Name tcp-6

Operation Complete a TCP handshake, send the test string in

a series of 1-byte TCP data segments, and increase

the sequence number by 1000 midway through the

stream.

Behavior Tested Does the IDS \recover" from sudden changes in the

sequence number?

Target Validity Invalid

48

Name tcp-7

Operation Complete a TCP handshake, send the test string in a

series of 1-byte TCP data segments, interleaved with

a stream of 1-byte data segments for the same con-

nection but with drastically di�erent sequence num-

bers.

Behavior Tested Does the subject IDS check sequence numbers during

reassembly?

Target Validity Valid

Name tcp-8

Operation Complete a TCP handshake, send the test string in

a series of 1-byte TCP data segments, with one of

those segments sent out of order.

Behavior Tested Can the subject IDS handle basic out-of-order TCP

reassembly?

Target Validity Valid

Name tcp-9

Operation Complete a TCP handshake, send the test string in a

series of 1-byte TCP data segments, sent in random

order.

Behavior Tested Can the IDS handle pathological out-of-order TCP

reassembly?

Target Validity Valid

Name tcbc-1

Operation Do not complete a TCP handshake, but send the test

string in a series of 1-byte TCP data segments as if a

handshake had occurred for some arbitrary sequence

number.

Behavior Tested Does the IDS require a handshake before it will start

recording data from a connection?

Target Validity Invalid

Name tcbc-2

Operation Complete a TCP handshake, send the test string in a

series of 1-byte TCP segments, interleaved with SYN

packets for the same connection parameters.

Behavior Tested Does the IDS resynchronize on a SYN packet re-

ceived after a complete TCP handshake?

Target Validity Valid

49

Name tcbc-3

Operation Do not complete a TCP handshake, but send a

stream of arbitrary data at a random sequence num-

ber as if one had occurred. Use the same connection

parameters to connect with \netcat" and type the

test string in manually.

Behavior Tested Can the IDS be desynchronized due to badly se-

quenced fake data prior to a real connection initi-

ation?

Target Validity Valid

Name tcbt-1

Operation Complete a TCP handshake and immediately shut

the connection down with an RST. Re-connect over

the same parameters, with drastically di�erent se-

quence numbers, and send the test string in a series

of 1-byte TCP data segments.

Behavior Tested Does the IDS correctly resynchronize after a connec-

tion is legitimately torn down with an RST?

Target Validity Valid

Name tcbt-2

Operation Complete a TCP handshake and send the test string

in a series of 1-byte TCP data segments. Midway

through the stream, tear the connection down with

an RST (but continue to send the rest of the data

segments).

Behavior Tested Does the IDS stop recording data when it sees an

RST?

Target Validity Invalid

Name insert-1

Operation Complete a TCP handshake and send the test string

in a series of 1-byte TCP data segments, each with

a bad IP checksum.

Behavior Tested Does the IDS verify the IP checksum on received

packets?

Target Validity Invalid

Name insert-2

Operation Complete a TCP handshake and send the test string

in a series of 1-byte TCP data segments, each with

a bad TCP checksum.

Behavior Tested Does the IDS verify the TCP checksum on received

segments?

Target Validity Invalid

50

Name insert-3

Operation Complete a TCP handshake and send the test string

in a series of 1-byte TCP data segments, none of

which have the ACK bit set.

Behavior Tested Does the IDS accept TCP data in segments without

the ACK bit?

Target Validity Invalid

Name evade-1

Operation Complete a TCP handshake, include the test string

in the initial SYN packet.

Behavior Tested Does the IDS accept data in a SYN packet?

Target Validity Valid

7.5 Summary

Because our tests are scripted, they are well-de�ned, easily repeated, and fast.

After de�ning and perfecting the test suite, we were able to completely test

new ID systems in a matter of minutes. The majority of our testing time was

spent de�ning new tests. Running the individual tests against ID systems took

negligible time.

We are in the process of releasing the scripting tool that we used for the

tests to the public. When this process has completed, we intend to make the

suite of IDS test scripts we've developed available to the public as well. It is

our hope that our work can de�ne a framework within which arbitrary network

ID systems can quickly be evaluated.

Our test suite is by no means complete; we provide these test results to

support the points in our paper, not to de�ne a complete evaluation process

for ID systems. With the tools to conduct these tests in the hands of the

community, we hope that our tests can be extended to de�ne a more complete

test suite.

8 Results

We applied our tests to four of the most popular network intrusion detection

systems on the market. In each case, our tests identi�ed serious, exploitable

problems in the manner that the IDS reconstructed data transmitted on the

network. The results of our tests are not surprising, and we believe that they

support the basic points we make in this paper.

In many cases, the ID systems we tested had general problems that precluded

them from passing entire collections of speci�c tests. For example, none of

the systems we tested correctly handled IP fragmentation; thus, the systems

incorrectly handled all the speci�c fragmentation tests. We ran every test we

could against each ID system.

One of the systems we tested, WheelGroup's NetRanger system, is avail-

able only with its associated hardware. We were unable to test this system on

51

our own network, but rather had to obtain the cooperation of an organization

already using the product. This prevented us from running many of our tests

against this product; NetRanger was the second system we tested, and we added

many tests after our �rst (and only) exposure to the system. One of our tests

(\tcp-1") also required us to have access to the local network the test machine

was on | we did not have this access for NetRanger.

Another system we test, Network Flight Recorder's NFR system, is not an

intrusion detection system per se, but rather a network monitoring engine that

can be used to build an intrusion detection system (among many other things).

Our results are signi�cant to the usage of NFR as an automated network IDS,

but not necessarily to the product as a whole.

It's important to note that the number of \failed" tests each product has is

not necessarily an indication of the relative quality of the product. The number

of tests each IDS passes is biased heavily based on the presence of speci�c bugs.

Our test suite was not designed to provide a \score" for each product, but rather

to highlight speci�c characteristics about them.

8.1 Speci�c Results

The systems we tested were Internet Security Systems' \RealSecure" (version

1.0.97.224 for Windows NT), WheelGroup Corporation's \NetRanger" (version

1.2.2), AbirNet's \SessionWall-3" (version 1, release 2, build v1.2.0.26 for Win-

dows NT), and Network Flight Recorder's \NFR" (version beta-2).

We present the overall results from our tests for every IDS in Figure 15.

Each individual IDS is described after the table, along with an interpretation

of the results.

For each test, a plus sign (`+') indicates that the IDS saw a PHF attack as

a result of the packets our test injected. A minus sign (`-') indicates that the

IDS reported no attack after we ran our test. A question-mark (`?') indicates

that we were unable to perform the test on that product.

8.2 Overviews of Speci�c ID Systems

8.2.1 ISS RealSecure

ISS RealSecure is an automated network intrusion detection system. We per-

formed our tests on the Windows NT version of the product, although it is

available for Unix platforms as well.

RealSecure appears to have two independent network monitor components.

The �rst of these handles signature recognition within captured packets; the

second provides a \realtime playback" capability that allows administrators to

watch the information being exchanged in a TCP connection in real-time.

We found signi�cant di�erences between the playback facility and the signa-

ture recognition facility. Unlike RealSecure's signature recognition engine, the

52

Test Name Expected Result RealSecure NetRanger SessionWall NFR

baseline-1 + + + + +

baseline-2 + + + + +

frag-1 + - - - -

frag-2 + - - - -

frag-3 + - - - -

frag-4 + - - - -

frag-5 + - - - -

frag-6 + - - - -

frag-7 + - ? - -

tcp-1 - + ? + ?

tcp-2 + + + - -

tcp-3 + + + + +

tcp-4 + + + + +

tcp-5 + + + + +

tcp-6 - - + + +

tcp-7 + - + + +

tcp-8 + - - - +

tcp-9 + - ? - -

tcbc-1 - + - - +

tcbc-2 + + ? - -

tcbc-3 + - - + +

tcbt-1 + - ? + +

tcbt-2 - + ? - +

insert-1 - + - - +

insert-2 - + + - +

insert-3 - + ? - +

evade-1 + + - - +

Figure 15: IDS Test Suite Results

53

playback system does not appear to sanity check TCP packets before present-

ing their contents to the user. No sequence number checking was performed

in session playback, and out-of-order packets were displayed out of order. An

attacker can trivially obscure her actions in RealSecure session playback simply

by accompanying her connection with a stream of meaningless, unsequenced

TCP packets for the connection; she can also confuse administrators by sending

all her packets out of order.

The most signi�cant problem with RealSecure, as with all the other systems

we tested, was that it did not handle IP fragmentation reassembly at all. An

attacker can completely evade RealSecure by fragmenting every packet she sends

across the network.

RealSecure also appeared to have serious problems with TCP reassembly

when duplicate segments appeared on the network. RealSecure never detected

an attack in any of the tests we ran that involved sending multiple TCP seg-

ments with the same sequence number, even though those tests resulted in valid

reassembly of the test string on the target host.

RealSecure does not appear to pay attention to TCP RST messages. We

were able to desynchronize RealSecure by closing a connection with a client

RST message, and then immediately reconnecting using the same parameters.

RealSecure recognized attacks in streams even after their connection was reset.

RealSecure also does not appear to pay attention to TCP SYN messages; we

were able to desynchronize RealSecure from our connections by preceding them

with arbitrary data segments with random sequence numbers.

Finally, RealSecure was vulnerable to all of our insertion attacks. It did not

appear to check IP or TCP checksums, nor did it verify that the ACK bit was

set on TCP data segments.

8.2.2 WheelGroup NetRanger

NetRanger is an automated network intrusion detection system by WheelGroup

Corporation. NetRanger interfaces a passive network monitor with a packet

�ltering router, creating a \reactive" IDS; the ability to respond in realtime to

attacks by \shunning" addresses (�ltering them at the router) is a major feature

of the system.

We had very limited access to the NetRanger system. The hardware require-

ment (and price) of this system made it impractical for us to obtain our own

copy for testing; rather, we relied on the cooperation of an organization already

using the product. Because of this, our tests were performed over the global

Internet, and we were only able to perform certain tests (due to timing issues).

Our test results for NetRanger still showed major problems.

Like all the systems we reviewed, NetRanger (in the version we tested) is

completely unable to handle fragmented IP packets. An attacker can evade

NetRanger completely by fragmenting all her packets.

We were able to evade NetRanger by injecting duplicate sequenced segments

with di�erent data into our connection stream (the \tcp-8" test). NetRanger did

54

not detect data in a SYN packet, so an attacker can evade many of NetRanger's

checks by putting crucial data in her initial SYN packet.

We were able to desynchronize NetRanger from our connections by preceding

the connection with fake, randomly sequenced data. NetRanger failed to detect

attacks in a connection, using the same parameters, that followed this.

Finally, NetRanger was vulnerable to one of our insertion attacks (it doesn't

appear to validate TCP checksums). NetRanger did appear to reliably verify

IP checksums.

Many of our tests were not performed against NetRanger. We can't conjec-

ture as to whether NetRanger is vulnerable to the attacks those tests measure.

Hopefully, these tests can be run against NetRanger in the future.

8.2.3 AbirNet SessionWall-3

SessionWall is an automated network intrusion detection system by AbirNet.

We tested the Windows NT version of AbirNet SessionWall-3. Although Abir-

Net appears to have realtime connection playback capabilities, we were unable

to get it working in the evaluation copy we used for our tests.

Of all the ID systems we tested, AbirNet appeared have the most strict

network monitoring system. SessionWall-3 did not record data for connections

that weren't marked by a three-way handshake. It stopped recording when

a connection was torn down with an RST packet. This prevented our TCB

desynchronization tests from disrupting the system; however, the strictness of

SessionWall's implementation may be attackable as well (insertion of RST pack-

ets, for instance, could be used for evasion attacks).

SessionWall validated IP and TCP checksums, and did not accept data with-

out the ACK bit set. It did not appear to wait for acknowledgment before

accepting data, however.

We were able to desynchronize SessionWall-3 from our connections by inject-

ing fake SYN packets into our stream; the SYNs were ignored by the endpoint,

but SessionWall apparently resynchronized to them and lost pattern matching

state. Like NetRanger, SessionWall-3 also failed to detect data in SYN pack-

ets. SessionWall did not reassemble overlapping TCP segments in a manner

consistant with 4.4BSD, and is thus vulnerable to an evasion attack.

Like all the systems we reviewed, SessionWall-3 is completely unable to han-

dle fragmented IP packets. An attacker can evade SessionWall-3 by fragmenting

all her packets.

8.2.4 Network Flight Recorder

NFR is a network monitoring engine by Network Flight Recorder. Unlike the

other systems we tested, NFR is not an automated network intrusion detection

system; rather, NFR provides a network monitoring component that can be

used in a variety of applications. NFR is user-programmable and extensible,

and available in source code.

55

We reviewed NFR because its engine could be used as an automated network

intrusion detection system. This is not the intent of the product, and our

results do not have signi�cant bearing on NFR's non-security uses. Additionally,

because NFR is completely programmable (the product is really an interpreter

for a network programming language), it is possible for users of the product to

address many of the concerns we bring up in our paper without modifying the

underlying engine.

NFR was able to handle IP fragmentation; we veri�ed this in an independent

testing process that con�rmed NFR's ability to reassemble a fragmented UDP

packet (we were able to perform this test because of NFR's available source

code). Unfortunately, NFR was unable to handle pattern matching in a TCP

stream that was sent in fragmented IP packets; it therefore \failed" all of our

fragmentation tests.

NFR, in version beta-2, was vulnerable to all our insertion attack tests. It

did not verify IP or TCP checksums, and accepted data without the ACK bit

set. NFR detects data in SYN packets.

NFR does not immediately tear down a connection TCB when an RST is

seen. We were able to desynchronize NFR by sending spurious SYN packets in

our connections, but were unable to successfully desynchronize it with any of

our other tests. NFR did not reassemble overlapping TCP segments consistantly

with 4.4BSD, and is thus vulnerable to an evasion attack.

56

9 Discussion

Our tests revealed serious aws in each system we examined. Every IDS we

examined could be completely eluded by a savvy attacker. We have no reason

to believe that skilled attackers on the Internet don't already know and aren't

already exploiting this fact. Many of the problems we tested for were minor,

and easily �xed. The very presence of such vulnerabilities leads us to believe

that ID systems have not adequately been tested.

The ability to forge packets, and the ability to \insert" packets into ID

systems, makes it fairly trivial for an attacker to forge \attacks" from arbitrary

addresses. The ability to react to attacks by recon�guring packet �lters was a

major advertised feature of many of the systems we tested. Our work shows that

this capability can be leveraged against the system operators by an attacker;

these facilities may do more harm than good.

Several of the problems we outline in this paper have no obvious solution.

Without adding a secondary source of information for the IDS, allowing it to

conclusively identify which packets have been accepted by an end-system, there

appear to be ways to create connections that cannot be tracked by passive ID

systems. Since the network conditions an attacker needs to induce to elude an

IDS are abnormal, an IDS may be able to detect that an attack is occurring;

unfortunately, this will be all that an IDS will be able to say.

Regardless of whether a problem is obviously solvable or not, its presence is

signi�cant to both IDS users and designers. Users need to understand that the

manner they con�gure the IDS (and their network) has a very real impact on

the security of the system, and on the availability of their network. Designers

need to understand the basic problems we identify with packet capture, and

must begin testing their systems more rigorously.

Finally, the security community (buyers of network ID systems, designers

of such systems, as well as interested third parties like us) as a whole can do

much to enhance the reliability and security of intrusion detection systems.

Additional, independent third-party analysis and testing of ID systems will, to

a large extent, de�ne how secure these systems will be in the future.

9.1 Implications to Operators

There are several things that can be done by IDS operators to enhance the

overall security of the system as a whole. Additionally, IDS operators need to

understand that the outputs of their systems must be read critically; \session

playback" data may not represent what's actually occurring in a session, and

the source addresses of attacks may not be valid at all.

One critically important step that must be taken before an IDS can be

e�ectively used is to set up \spoof protection" �lters, which prevent attackers on

the Internet from injecting packets with addresses forged to look like \internal"

systems into the network. Bidirectional packet forgery can completely confuse

network intrusion detection systems.

57

It's important to understand that an attacker that successfully breaks into an

IDS-protected network probably controls the IDS. An attacker with direct access

to the network she's attacking can forge valid-looking responses from systems

she's attacking. These forged packets can prevent the IDS from obtaining any

coherent picture of what's happening on the network. As soon as an IDS records

a \successful" attack on the network, administrators should assume that all bets

are o�, and further attacks are occurring without the knowledge of the IDS.

An attacker can fool \session playback" facilities into playing arbitrary data

back to the operators. Session playback may not accurately represent what's

happening inside of a connection. Real-time connection monitoring (when based

on an ID system's reconstruction of what's happening in a TCP stream, rather

than on printing and recording every packet on the wire) should not be trusted.

Finally, it's of critical importance that ID system operators do not con�gure

their system to \react" to arbitrary attacks. An attacker can easily deny ser-

vice to the entire network by triggering these reactions with faked packets; ID

systems that recon�gure router �lters are particularly vulnerable to this, as an

attacker can forge attacks that appear to come from important sites (like DNS

servers), and cause the IDS to cut o� connectivity to these sites.

One possible step that can be taken to mitigate the risk of countermeasure

subversion is to allow the system to be con�gured never to react to certain hosts.

None of the systems we tested appeared to allow this type of con�guration. Of

course, if an attacker can spoof connections from the \untouchable" hosts, she

can exploit this to evade countermeasures entirely.

Attacks that can be trivially forged (ping oods, UDP-based attacks, etc.)

should not be reacted to; an attacker can, simply by forging packets, cause

countermeasures to be deployed that might disrupt the network. Systems that

aren't strict about reconstructing TCP sessions (ie, that don't wait for three-

way handshakes before recording data) present the same vulnerability for TCP

connections as well.

9.2 Implications to Designers

This paper has particularly great relevance to designers of intrusion detection

systems, as it outlines in detail many attacks that such systems need to be

resistant to. In that sense, this entire paper presents conclusions relevant to

IDS designers. However, there are some overall issues that need to be addressed

by IDS vendors.

Most of the problems we outline in this paper occur only when very abnor-

mal series of packets are injected onto the network. Overlapping IP fragments

or TCP segments are not common; connections consisting entirely of overlap-

ping segments are almost certainly attacks. Even if it's not possible to reliably

reconstruct information contained in such streams, it is possible to alert admin-

istrators to the presence of the abnormal packets.

Of course, this doesn't work as a design strategy; the value of an IDS is

drastically reduced when all it can tell an administrator is \I've detected an

58

attack against this host, but can't tell you speci�cally what it is." Nevertheless,

some information is better than the complete lack of information available now.

The most important issue that vendors need to address is testing. Some

of the problems we discovered were so basic (the conditions leading to these

problems occur frequently even in normal tra�c) that it appeared as if no in-

depth testing had been performed at all. We found severe aws in systems that

attempted to address problems | for instance, a program that reassembled

fragments, but could not perform signature recognition in packets that had

been fragmented.

Testing network intrusion detection systems is not simple. In order to test a

network IDS, carefully coordinated streams of forged packets need to be injected

onto a network; tools that are capable of doing this in a manner exible enough

to test ID systems are products in and of themselves. Our work de�nes the

beginning of a framework within which ID systems can be tested, and, hopefully,

the availability of our tools will increase the ability of vendors to test their

systems.

9.3 Implications to the Community

The number of attacks against network ID systems, and the relative simplicity

of the problems that were actually demonstrated to be exploitable on the com-

mercial systems we tested, indicates to us that network intrusion detection is

not a mature technology. More research and testing needs to occur before net-

work intrusion detection can be looked to as a reliable component in a security

system.

Much of this research must be done independently of the vendors. No cred-

ible public evaluations of network intrusion detection systems currently exist.

The trade press evaluates security products by their features and ease of use,

not by their security. Because network intrusion detection is so fragile, it's

important that they receive more scrutiny from the community.

Our paper de�nes methods by which network intrusion detection systems

can be tested. It is obvious that our tests can be extended, and that our

methodology can be improved. Everyone stands to bene�t from such work, and

it is hoped that our work can serve as a catalyst for it.

One issue that drastically impacted our ability to test ID systems was the

availability of source code. Only one product we reviewed made source code

available. Because intrusion detection is so susceptible to attack, we think it's

wise to demand source code from all vendors. Products with freely available

source code will obtain more peer review than products with secret source code.

If our work makes anything clear, it's that marketing claims cannot be a trusted

source of information about ID systems.

59

References

[1] S. Staniford-Chen, "Common Intrusion Detection Framework,"

http://seclab.cs.ucdavis.edu/cidf/

[2] H. S. Javits and A. Valdes \The SRI Statistical Anomaly Detector," In

Proceedings of the 14th National Computer Security Conference, October
1991.

[3] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J.

Hoagland, K. Levitt, C. Wee, R. Yip and D. Zerkle, \GrIDS { A Graph-

Based Intrusion Detection System for Large Networks," In The 19th National
Information Systems Security Conference, 1996.

[4] K. L. Fox, R. R. Henning, J. H. Reed and R. P. Simonian, \A Neural Network

Approach towards Intrusion Detection," In Proceedings of the 13th National
Computer Security Conference, October 1990.

[5] P. A. Porras and A. Valdes, \Live Tra�c Analysis of TCP/IP Gateways,"

To appear in Internet Society's Networks and Distributed Systems Security
Symposium, March 1998.

[6] N. F. Puketza, K. Zhang, M. Chung, B. Mukherjee and R. A. Olsson , \A

Methodology for Testing Intrusion Detection Systems," IEEE Transactions
on Software Engineering, vol. 22, pp. 719-729, October 1996.

[7] M. StJohns, \Authentication Server," RFC 931, TPSC, January 1985.

[8] W. R. Stevens, TCP/IP Illustrated, Vol 1. Addison-Wesley, Reading, MA,

1994.

[9] J. Postel, \Internet Protocol - DARPA Internet Program Protocol Speci�-

cation," RFC 791, USC/Information Sciences Institute, September 1981.

[10] J. Postel, \Internet Protocol - DARPA Internet Program Protocol Spec-

i�cation." RFC 791, USC/Information Sciences Institute, Section 3.2, line

1099, September 1981.

[11] R. Atkinson, \Security Architecture for the Internet Protocol." RFC 1825,

Naval Research Laboratory, August 1995.

[12] J. Postel, \Transmission Control Protocol - DARPA Internet Program Pro-

tocol Speci�cation," RFC 793, USC/Information Sciences Institute, Septem-

ber 1981.

[13] V. Jacobson, R. Braden and D. Borman, \TCP Extensions for High Per-

formance," RFC 1323, LBL, ISI, Cray Research, May 1992.

[14] L. Joncheray, \A Simple Attack Against TCP," In 5th USENIX UNIX
Security Symposium, June 1995.

60

[15] Secure Networks, Inc., Custom Attack Simulation Language (CASL), User
manual, 1998.

[16] Avian Research, netcat, Available for download at

ftp://avian.org/src/hacks/nc110.tgz

[17] V. Paxson, \Bro: A System for Detecting Network Intruders in Real-Time,"

In 7th Annual USENIX Security Symposium, January 1998.

[18] V. Paxson, \End-to-End Internet Packet Dynamics," In ACM SIGCOMM
'97, September 1997, Cannes, France.

[19] Lawrence Berkeley National Laboratory, tcpdump, Available for download

at ftp://ftp.ee.lbl.gov/tcpdump.tar.Z

61

Thanks

This work would not have been possible without the assistance of many peo-

ple. Several people gave us valuable input and criticism, and some of our tests

would not have been possible without the cooperation of companies running ID

systems. We'd like to express our sincere appreciation for this help.

This work was made possible by Secure Networks, Inc. We'd like to thank

Alfred Huger, Oliver Friedrichs, and Jon Wilkins for their assistance with this

project.

We obtained valuable comments from several of the vendors we reviewed.

We'd speci�cally like to thank Marcus Ranum of Network Flight Recorder, Mike

Neumann of EnGarde, and Elliot Turner of MimeStar for their comments and

critiques of our technical work.

Vern Paxson of LBL published, as this document was being �nished, a pa-

per regarding the design of his real-time network intrusion detection system,

\Bro"[17]. His paper details several attacks against network ID systems (many

of which we did not catch ourselves). We'd like to thank Mr. Paxson for his

extremely valuable input on our own work.

Of course, we appreciate greatly the fact that Network Flight Recorder made

their source code available to the public for review. This was a courageous and

honorable thing to do (especially in a market as competitive as this), and NFR's

approach to source code release is a model that should be followed by other

vendors.

Finally, this paper would not have been possible without the assistance of

Jennifer Myers at EnterAct, L.L.C., who e�ectively rewrote our technical results

into a coherant document.

About CASL

Our tests were made possible by the development of a security tool called CASL.

CASL is a network protocol exploration tool designed to allow security auditors

to quickly and easily simulate network events at a very low level. With a

minimal amount of e�ort, CASL can e�ectively be used to forge any kind of

IP packet. With slight programming ability, CASL can be used to perform

complex protocol interactions with other networked hosts.

CASL was inspired by tools like Darren Reed's well-known \ipsend" utility,

which allowed experimenters to forge a large number of IP packets. However,

CASL expands signi�cantly on these types of tools. Some of the bene�ts of

CASL over its predecessors include:

� A complete programming language, with most typical high-level language

control constructs (e.g., \if", \while", and \for" statements), and designed

to be as easy to learn and use as shell-script languages, but with network

programming functionality rivaling that of \C" code.

62

� The ability to create arbitrary packets | not just the ones we thought up

as we designed the program! Unlike some tools, which allow users to to

create arbitrary packets by including \raw" data (presumably built with

some other tool), CASL allows users to lay out the format of new packet

types with an expressive and simple \record" syntax, allowing protocol

header �elds to be laid out bit-by-bit and byte-by-byte.

� The ability to input packets, reading promiscuously o� the wire, and

quickly extract information from them. Network reads use familiar \tcp-

dump" expressions to select packets, and any number of packets can be

read in and examined simultaneously.

CASL is a self-contained, free-standing program that doesn't depend on

other network or programming tools to operate. It can be installed quickly, and

a CASL script will work on any supported platform. The tool is small, and

consumes a fairly low amount of resources; CASL programs can easily share a

system with other large applications, and don't consume the large amounts of

memory and CPU that general-purpose languages (like Perl and Tcl) tend to.

We designed this tool to meet the needs of two very di�erent audiences:

on one hand, CASL is expressive and powerful enough to be a useful tool for

experienced, uent \C" programmers; on the other, it's simple enough to be

picked up by a nonprogrammer as quickly as Bourne shell scripting. A CASL

script can be little more than a 5 line packet template for users who simply

want to forge packets, or it can be tens or hundreds of lines of functional code,

with loops, variables, conditionals, subroutines, and other high-level-language

capabilities.

We are making CASL available for free for noncommercial use, in the hopes

that it can be used to further the state of the art in security research. For more

information about CASL, contact Secure Networks Inc.

About Secure Networks, Inc.

Secure Networks, Inc. is a security research and development company located

in Calgary, Alberta, Canada. In addition to extensive publically available secu-

rity research results, Secure Networks also sells security assessment tools. You

can �nd out more about our work at http://www.secnet.com. Secure Networks

is reachable via email at \info@secnet.com", and via telephone at 403-262-9211.

63

